咨询与建议

限定检索结果

文献类型

  • 2,576 篇 期刊文献
  • 1,735 篇 会议
  • 28 册 图书

馆藏范围

  • 4,339 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,792 篇 工学
    • 2,080 篇 计算机科学与技术...
    • 1,729 篇 软件工程
    • 595 篇 信息与通信工程
    • 434 篇 生物工程
    • 400 篇 电气工程
    • 353 篇 控制科学与工程
    • 350 篇 生物医学工程(可授...
    • 284 篇 光学工程
    • 251 篇 电子科学与技术(可...
    • 138 篇 机械工程
    • 135 篇 化学工程与技术
    • 116 篇 仪器科学与技术
    • 112 篇 安全科学与工程
    • 109 篇 动力工程及工程热...
    • 101 篇 交通运输工程
  • 1,812 篇 理学
    • 884 篇 数学
    • 565 篇 物理学
    • 505 篇 生物学
    • 351 篇 统计学(可授理学、...
    • 167 篇 化学
    • 156 篇 系统科学
    • 115 篇 地球物理学
  • 754 篇 管理学
    • 473 篇 管理科学与工程(可...
    • 306 篇 图书情报与档案管...
    • 274 篇 工商管理
  • 370 篇 医学
    • 320 篇 临床医学
    • 272 篇 基础医学(可授医学...
    • 163 篇 公共卫生与预防医...
    • 150 篇 药学(可授医学、理...
  • 135 篇 法学
    • 120 篇 社会学
  • 93 篇 经济学
  • 82 篇 农学
  • 51 篇 教育学
  • 8 篇 军事学
  • 6 篇 文学
  • 4 篇 艺术学
  • 1 篇 历史学

主题

  • 156 篇 deep learning
  • 155 篇 accuracy
  • 134 篇 machine learning
  • 93 篇 training
  • 86 篇 computational mo...
  • 84 篇 feature extracti...
  • 77 篇 convolutional ne...
  • 74 篇 real-time system...
  • 72 篇 predictive model...
  • 63 篇 internet of thin...
  • 63 篇 artificial intel...
  • 60 篇 data models
  • 58 篇 reinforcement le...
  • 52 篇 federated learni...
  • 49 篇 optimization
  • 46 篇 image segmentati...
  • 46 篇 graph neural net...
  • 46 篇 semantics
  • 42 篇 generative adver...
  • 42 篇 adversarial mach...

机构

  • 169 篇 college of compu...
  • 63 篇 department of co...
  • 61 篇 nanyang technolo...
  • 51 篇 department of co...
  • 48 篇 beijing advanced...
  • 42 篇 college of compu...
  • 40 篇 data science ins...
  • 38 篇 national enginee...
  • 34 篇 department of co...
  • 34 篇 university of ch...
  • 31 篇 school of data a...
  • 30 篇 the college of c...
  • 27 篇 dipartimento di ...
  • 26 篇 the oskar klein ...
  • 25 篇 college of intel...
  • 24 篇 department of br...
  • 23 篇 center for scien...
  • 23 篇 college of infor...
  • 23 篇 department of co...
  • 22 篇 department of ph...

作者

  • 161 篇 niyato dusit
  • 35 篇 sun geng
  • 35 篇 chen mingzhe
  • 31 篇 du hongyang
  • 30 篇 peng hao
  • 27 篇 e. j. siskind
  • 27 篇 r. bellazzini
  • 26 篇 wang jiacheng
  • 25 篇 j. b. thayer
  • 25 篇 p. spinelli
  • 25 篇 m. kuss
  • 25 篇 guo yike
  • 24 篇 s. guiriec
  • 23 篇 p. a. caraveo
  • 23 篇 p. f. michelson
  • 23 篇 s. ciprini
  • 23 篇 r. rando
  • 23 篇 kang jiawen
  • 22 篇 m. ackermann
  • 22 篇 a. reimer

语言

  • 3,655 篇 英文
  • 672 篇 其他
  • 16 篇 中文
  • 2 篇 斯洛文尼亚文
检索条件"机构=Department of Computing and Data Science"
4339 条 记 录,以下是4011-4020 订阅
排序:
Learning from learning machines: A new generation of AI technology to meet the needs of science
arXiv
收藏 引用
arXiv 2021年
作者: Pion-Tonachini, Luca Bouchard, Kristofer Martin, Hector Garcia Peisert, Sean Holtz, W. Bradley Aswani, Anil Dwivedi, Dipankar Wainwright, Haruko Pilania, Ghanshyam Nachman, Benjamin Marrone, Babetta L. Falco, Nicola Prabhat Arnold, Daniel Wolf-Yadlin, Alejandro Powers, Sarah Climer, Sharlee Jackson, Quinn Carlson, Ty Sohn, Michael Zwart, Petrus Kumar, Neeraj Justice, Amy Tomlin, Claire Jacobson, Daniel Micklem, Gos Gkoutos, Georgios V. Bickel, Peter J. Cazier, Jean-Baptiste Müller, Juliane Webb-Robertson, Bobbie-Jo Stevens, Rick Anderson, Mark Kreutz-Delgado, Ken Mahoney, Michael W. Brown, James B. Pattern Computer Inc. Friday HarborWA98250 United States Biosciences Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Computational Research Division Lawrence Berkeley National Lab BerkeleyCA94720 United States Helen Wils Neuroscience Institute Redwood Center for Theoretical Neuroscience Uc Berkeley BerkeleyCA94720 United States Doe Agile BioFoundry Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Joint BioEnergy Institute Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Bcam Basque Center for Applied Mathematics Bilbao48009 Spain Computer Science University of California Davis DavisCA95616 United States Cenic La MiradaCA90638 United States Health Informatics University of California Davis School of Medicine SacramentoCA95817 United States Berkeley Institute for Data Science University of California Berkeley BerkeleyCA94720 United States Industrial Engineering and Operations Research University of California Berkeley BerkeleyCA94720 United States Environmental & Earth Sciences Area Lawrence Berkeley National Laboratory BerkeleyCA94803 United States Nuclear Engineering University of California Berkeley BerkeleyCA94720 United States Materials Science and Technology Division Los Alamos National Laboratory Los AlamosNM87545 United States Physics Division Lawrence Berkeley National Lab BerkeleyCA94720 United States Bioscience Division Los Alamos National Laboratory Los AlamosNM87545 United States Earth and Environmental Sciences Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Energy Technologies Area Lawrence Berkeley National Lab BerkeleyCA94803 United States Computing and Computational Sciences Oak Ridge National Laboratory Oak RidgeTN37831 United States Industrial & Systems Engineering The University of Tennessee KnoxvilleTN37996 United States Department of Computer Science University of Missouri-Saint Louis St. LouisMO63121 United
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery. The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patte... 详细信息
来源: 评论
NL-Augmenter A Framework for Task-Sensitive Natural Language Augmentation
arXiv
收藏 引用
arXiv 2021年
作者: Dhole, Kaustubh D. Gangal, Varun Gehrmann, Sebastian Gupta, Aadesh Li, Zhenhao Mahamood, Saad Mahendiran, Abinaya Mille, Simon Shrivastava, Ashish Tan, Samson Wu, Tongshuang Sohl-Dickstein, Jascha Choi, Jinho D. Hovy, Eduard Dušek, Ondřej Ruder, Sebastian Anand, Sajant Aneja, Nagender Banjade, Rabin Barthe, Lisa Behnke, Hanna Berlot-Attwell, Ian Boyle, Connor Brun, Caroline Sobrevilla Cabezudo, Marco Antonio Cahyawijaya, Samuel Chapuis, Emile Che, Wanxiang Choudhary, Mukund Clauss, Christian Colombo, Pierre Cornell, Filip Dagan, Gautier Das, Mayukh Dixit, Tanay Dopierre, Thomas Dray, Paul-Alexis Dubey, Suchitra Ekeinhor, Tatiana Giovanni, Marco Di Goyal, Tanya Gupta, Rishabh Hamla, Louanes Han, Sang Harel-Canada, Fabrice Honoré, Antoine Jindal, Ishan Joniak, Przemyslaw K. Kleyko, Denis Kovatchev, Venelin Krishna, Kalpesh Kumar, Ashutosh Langer, Stefan Lee, Seungjae Ryan Levinson, Corey James Liang, Hualou Liang, Kaizhao Liu, Zhexiong Lukyanenko, Andrey Marivate, Vukosi de Melo, Gerard Meoni, Simon Meyer, Maxime Mir, Afnan Moosavi, Nafise Sadat Muennighoff, Niklas Hon Mun, Timothy Sum Murray, Kenton Namysl, Marcin Obedkova, Maria Oli, Priti Pasricha, Nivranshu Pfister, Jan Plant, Richard Prabhu, Vinay Pais, Vasile Qin, Libo Raji, Shahab Rajpoot, Pawan Kumar Raunak, Vikas Rinberg, Roy Roberts, Nicholas Rodriguez, Juan Diego Roux, Claude Vasconcellos, P.H.S. Sai, Ananya B. Schmidt, Robin M. Scialom, Thomas Sefara, Tshephisho Shamsi, Saqib N. Shen, Xudong Shi, Yiwen Shi, Haoyue Shvets, Anna Siegel, Nick Sileo, Damien Simon, Jamie Singh, Chandan Sitelew, Roman Soni, Priyank Sorensen, Taylor Soto, William Srivastava, Aman Aditya Srivatsa, K.V. Sun, Tony Mukund Varma, T. Tabassum, A. Tan, Fiona Anting Teehan, Ryan Tiwari, Mo Tolkiehn, Marie Wang, Athena Wang, Zijian Wang, Zijie J. Wang, Gloria Wei, Fuxuan Wilie, Bryan Winata, Genta Indra Wu, Xinyi Wydmanski, Witold Xie, Tianbao Yaseen, Usama Yee, Michael A. Zhang, Jing Zhang, Yue ACKO Agara Amelia R&D New York United States Applied Research Laboratories The University of Texas at Austin United States Bloomberg Brigham Young University United States Carnegie Mellon University United States Center for Data and Computing in Natural Sciences Universität Hamburg Germany Charles River Analytics Charles University Prague Czech Republic Columbia University United States Council for Scientific and Industrial Research DeepMind United Kingdom Department of Computer Science University of Pretoria South Africa Drexel University United States Eberhard Karls University of Tübingen Germany Edinburgh Napier University United Kingdom Emory University United States Fablab by Inetum in Paris France Fraunhofer IAIS Germany Georgia Tech United States Google Brain United States Google Research United States Harbin Institute of Technology China Hasso Plattner Institute University of Potsdam Germany Hong Kong University of Science and Technology Hong Kong IBM Research IIT Delhi India IIT Madras India Illinois Mathematics and Science Academy United States Imperial College London United Kingdom Independent Indian Institute of Science Bangalore India Institut Teknologi Bandung Indonesia Institute of Data Science National University of Singapore Singapore International Institute of Information Technology Hyderabad India Jagiellonian University Poland Jean Monnet University France Johns Hopkins United States KTH Royal Institute of Technology Sweden KU Leuven Belgium MTS AI France Microsoft RedmondWA United States Mphasis NEXT Labs National University of Ireland Galway Ireland National University of Science and Technology Pakistan National University of Singapore Singapore Naver Labs Europe France Peking University China Politecnico di Milano University of Bologna Italy Polytechnic Institute of Paris France Pompeu Fabra University Spain Pontifical Catholic University of Minas Gerais Brazil Princeton University United States Rakuten India India Research Institu
data augmentation is an important component in the robustness evaluation of models in natural language processing (NLP) and in enhancing the diversity of the data they are trained on. In this paper, we present NL-Augm... 详细信息
来源: 评论
The NANOGrav 15 yr data Set: Looking for Signs of Discreteness in the Gravitational-wave Background
收藏 引用
The Astrophysical Journal 2024年 第1期978卷 31-31页
作者: Gabriella Agazie Akash Anumarlapudi Anne M. Archibald Zaven Arzoumanian Jeremy George Baier Paul T. Baker Bence Bécsy Laura Blecha Adam Brazier Paul R. Brook Lucas Brown Sarah Burke-Spolaor J. Andrew Casey-Clyde Maria Charisi Shami Chatterjee Tyler Cohen James M. Cordes Neil J. Cornish Fronefield Crawford H. Thankful Cromartie Kathryn Crowter Megan E. DeCesar Paul B. Demorest Heling Deng Timothy Dolch Elizabeth C. Ferrara William Fiore Emmanuel Fonseca Gabriel E. Freedman Nate Garver-Daniels Peter A. Gentile Joseph Glaser Deborah C. Good Kayhan Gültekin Jeffrey S. Hazboun Ross J. Jennings Aaron D. Johnson Megan L. Jones Andrew R. Kaiser David L. Kaplan Luke Zoltan Kelley Matthew Kerr Joey S. Key Nima Laal Michael T. Lam William G. Lamb Bjorn Larsen T. Joseph W. Lazio Natalia Lewandowska Tingting Liu Duncan R. Lorimer Jing Luo Ryan S. Lynch Chung-Pei Ma Dustin R. Madison Alexander McEwen James W. McKee Maura A. McLaughlin Natasha McMann Bradley W. Meyers Patrick M. Meyers Chiara M. F. Mingarelli Andrea Mitridate Priyamvada Natarajan Cherry Ng David J. Nice Stella Koch Ocker Ken D. Olum Timothy T. Pennucci Benetge B. P. Perera Nihan S. Pol Henri A. Radovan Scott M. Ransom Paul S. Ray Joseph D. Romano Jessie C. Runnoe Shashwat C. Sardesai Ann Schmiedekamp Carl Schmiedekamp Kai Schmitz Brent Shapiro-Albert Xavier Siemens Joseph Simon Magdalena S. Siwek Sophia V. Sosa Fiscella Ingrid H. Stairs Daniel R. Stinebring Kevin Stovall Abhimanyu Susobhanan Joseph K. Swiggum Stephen R. Taylor Jacob E. Turner Caner Unal Michele Vallisneri Sarah J. Vigeland Haley M. Wahl London Willson Caitlin A. Witt David Wright Olivia Young Center for Gravitation Cosmology and Astrophysics Department of Physics University of Wisconsin-milwaukee P.O. Box 413 Milwaukee WI 53201 USA Newcastle University NE1 7RU UK X-Ray Astrophysics Laboratory NASA Goddard Space Flight Center Code 662 Greenbelt MD 20771 USA Department of Physics Oregon State University Corvallis OR 97331 USA Department of Physics and Astronomy Widener University One University Place Chester PA 19013 USA Physics Department University of Florida Gainesville FL 32611 USA Cornell Center for Astrophysics and Planetary Science and Department of Astronomy Cornell University Ithaca NY 14853 USA Cornell Center for Advanced Computing Cornell University Ithaca NY 14853 USA Institute for Gravitational Wave Astronomy and School of Physics and Astronomy University of Birmingham Edgbaston Birmingham B15 2TT UK Institute of Cosmology Department of Physics and Astronomy Tufts University Medford MA 02155 USA Department of Physics and Astronomy West Virginia University P.O. Box 6315 Morgantown WV 26506 USA Center for Gravitational Waves and Cosmology West Virginia University Chestnut Ridge Research Building Morgantown WV 26505 USA Department of Physics University of Connecticut 196 Auditorium Road U-3046 Storrs CT 06269-3046 USA andrew.casey-clyde@uconn.edu Department of Physics and Astronomy Vanderbilt University 2301 Vanderbilt Place Nashville TN 37235 USA Department of Physics New Mexico Institute of Mining and Technology 801 Leroy Place Socorro NM 87801 USA Department of Physics Montana State University Bozeman MT 59717 USA Department of Physics and Astronomy Franklin & Marshall College P.O. Box 3003 Lancaster PA 17604 USA National Research Council Research Associate National Academy of Sciences Washington DC 20001 USA resident at Naval Research Laboratory Washington DC 20375 USA Department of Physics and Astronomy University of British Columbia 6224 Agricultural Road Vancouver BC V6T 1Z1 Canada George Mason Un
The cosmic merger history of supermassive black hole binaries (SMBHBs) is expected to produce a low-frequency gravitational wave background (GWB). Here we investigate how signs of the discrete nature of this GWB can m...
来源: 评论
Extractive Adversarial Networks for Network Embedding
Extractive Adversarial Networks for Network Embedding
收藏 引用
International Conference on Behavior, Economic and Social computing (BESC)
作者: Runxuan Chen Haoran Xie Jiaxing Chen Yanghui Rao Yingchao Zhao Fu Lee Wang School of Data and Computer Science Sun Yat-sen University Guangzhou China Department of Mathematics and Information Technology The Education University of Hong Kong Tai Po Hong Kong School of Computing and Information Sciences Caritas Institute of Higher Education Tseung kwan O Hong Kong School of Science and Technology The Open University of Hong Kong Kowloon Hong Kong
Network embedding has attracted more and more researchers recently. Although many algorithms focus on topological information, there exists a disadvantage. Nodes in many real-world network often have their own attribu... 详细信息
来源: 评论
Author Correction: The landscape of viral associations in human cancers
收藏 引用
Nature genetics 2023年 第6期55卷 1077页
作者: Marc Zapatka Ivan Borozan Daniel S Brewer Murat Iskar Adam Grundhoff Malik Alawi Nikita Desai Holger Sültmann Holger Moch Colin S Cooper Roland Eils Vincent Ferretti Peter Lichter Division of Molecular Genetics German Cancer Research Center (DKFZ) Heidelberg Germany. Informatics and Bio-computing Program Ontario Institute for Cancer Research Toronto Ontario Canada. Norwich Medical School University of East Anglia Norwich UK. Earlham Institute Norwich UK. Heinrich-Pette-Institute Leibniz Institute for Experimental Virology Hamburg Germany. German Center for Infection Research (DZIF) Partner Site Hamburg-Borstel-Lübeck-Riems Hamburg Germany. Bioinformatics Core University Medical Center Hamburg-Eppendorf Hamburg Germany. Bioinformatics Group Department of Computer Science University College London London UK. Biomedical Data Science Laboratory Francis Crick Institute London UK. National Center for Tumor Diseases (NCT) Heidelberg Heidelberg Germany. Division of Cancer Genome Research German Cancer Research Center (DKFZ) Heidelberg Germany. German Cancer Consortium (DKTK) Heidelberg Germany. Department of Pathology and Molecular Pathology University and University Hospital Zürich Zurich Switzerland. Institute of Cancer Research London UK. University of East Anglia Norwich UK. Division of Theoretical Bioinformatics German Cancer Research Center (DKFZ) Heidelberg Germany. Department of Bioinformatics and Functional Genomics Institute of Pharmacy and Molecular Biotechnology Heidelberg University and BioQuant Center Heidelberg Germany. Center for Digital Health Berlin Institute of Health and Charité Universitätsmedizin Berlin Berlin Germany. Ontario Institute for Cancer Research MaRS Centre Toronto Ontario Canada. Department of Biochemistry and Molecular Medicine University of Montreal Montreal Québec Canada. Division of Molecular Genetics German Cancer Research Center (DKFZ) Heidelberg Germany. peter.lichter@dkfz-heidelberg.de. German Cancer Consortium (DKTK) Heidelberg Germany. peter.lichter@dkfz-heidelberg.de.
来源: 评论
Private model compression via knowledge distillation
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Ji Bao, Weidong Sun, Lichao Zhu, Xiaomin Cao, Bokai Yu, Philip S. College of Systems Engineering National University of Defense Technology Changsha China Department of Computer Science University of Illinois at Chicago Chicago United States State Key Laboratory of High Performance Computing National University of Defense Technology Changsha China Facebook Inc. Menlo Park United States Institute for Data Science Tsinghua University Beijing China
The soaring demand for intelligent mobile applications calls for deploying powerful deep neural networks (DNNs) on mobile devices. However, the outstanding performance of DNNs notoriously relies on increasingly comple... 详细信息
来源: 评论
A question answering approach to emotion cause extraction
A question answering approach to emotion cause extraction
收藏 引用
2017 Conference on Empirical Methods in Natural Language Processing, EMNLP 2017
作者: Gui, Lin Hu, Jiannan He, Yulan Xu, Ruifeng Lu, Qin Du, Jiachen Shenzhen Graduate School Harbin Institute of Technology China College of Mathematics and Computer Science Fuzhou University China School of Engineering and Applied Science Aston University United Kingdom Guangdong Provincial Engineering Technology Research Center for Data Science China Department of Computing Hong Kong Polytechnic University Hong Kong
Emotion cause extraction aims to identify the reasons behind a certain emotion expressed in text. It is a much more difficult task compared to emotion classification. Inspired by recent advances in using deep memory n... 详细信息
来源: 评论
MRI-based brain tumor segmentation using Gaussian mixture model with reversible jump Markov chain Monte Carlo algorithm
收藏 引用
AIP Conference Proceedings 2019年 第1期2194卷
作者: Anindya Apriliyanti Pravitasari Yusuf Puji Hermanto Nur Iriawan Irhamah Kartika Fithriasari Santi Wulan Purnami Widiana Ferriastuti 1Department of Statistics Faculty of Mathematics and Natural Sciences Universitas Padjajaran 45363 Bandung Indonesia 2Department of Statistics Faculty of Mathematics Computing and Data Science Institut Teknologi Sepuluh Nopember 60111 Surabaya Indonesia 3Department of Radiology Faculty of MedicineUniversitas Airlangga 60115 Surabaya Indonesia
A brain tumor is the 15th deadly disease in Indonesia according to the WHO in 2018. In medical treatment, brain tumors can be detected through Magnetic Resonance Imaging (MRI). The main problem is how to separate the ...
来源: 评论
Not just privacy: Improving performance of private deep learning in mobile cloud
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Ji Zhang, Jianguo Bao, Weidong Zhu, Xiaomin Cao, Bokai Yu, Philip S. College of Systems Engineering National University of Defense Technology Changsha China Department of Computer Science University of Illinois at Chicago Chicago United States College of Systems Engineering State Key Laboratory of High Performance Computing National University of Defense Technology Changsha China Facebook Inc. Menlo Park United States Department of Computer Science University of Illinois at Chicago Chicago United States Institute for Data Science Tsinghua University Beijing China
The increasing demand for on-device deep learning services calls for a highly efficient manner to deploy deep neural networks (DNNs) on mobile devices with limited capacity. The cloud-based solution is a promising app... 详细信息
来源: 评论
GSTARIX Model for Forecasting Spatio-Temporal data with Trend, Seasonal and Intervention
收藏 引用
Journal of Physics: Conference Series 2018年 第1期1097卷
作者: M A Novianto Suhartono D D Prastyo A Suharsono Setiawan Department of Statistics Faculty of Mathematics Computing and Data Science Institut Teknologi Sepuluh Nopember Surabaya Indonesia
Generalized Space-Time Autoregressive (GSTAR) is a statistics model that usually applied for forecasting data that have both spatial and temporal dependency. The monthly tourist arrival data in some locations are exam...
来源: 评论