咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 1 篇 sepsis predictio...
  • 1 篇 machine learning
  • 1 篇 cloud computing

机构

  • 1 篇 department of el...
  • 1 篇 college of appli...
  • 1 篇 department of co...
  • 1 篇 department of in...
  • 1 篇 department of co...

作者

  • 1 篇 farag azzedin
  • 1 篇 md shafiullah
  • 1 篇 mohammad shorfuz...
  • 1 篇 lutful karim
  • 1 篇 md mahfuzur rahm...
  • 1 篇 md solaiman chow...

语言

  • 1 篇 英文
检索条件"机构=Department of Control&Instrumentation Engineering"
1 条 记 录,以下是1-10 订阅
排序:
Enhancing Septic Shock Detection through Interpretable Machine Learning
收藏 引用
Computer Modeling in engineering & Sciences 2024年 第12期141卷 2501-2525页
作者: Md Mahfuzur Rahman Md Solaiman Chowdhury Mohammad Shorfuzzaman Lutful Karim Md Shafiullah Farag Azzedin Department of Information and Computer Science King Fahd University of Petroleum and MineralsDhahran31261Saudi Arabia Department of Electrical and Computer Engineering North South UniversityDhaka1229Bangladesh Department of Computer Science Taif UniversityTaif21974Saudi Arabia College of Applied Arts and Technology Seneca PolytechnicTorontoM2J 2X5Canada Department of Control&Instrumentation Engineering King Fahd University of Petroleum and MineralsDhahran31261Saudi Arabia
This article presents an innovative approach that leverages interpretable machine learning models and cloud computing to accelerate the detection of septic shock by analyzing electronic health *** traditional methods,... 详细信息
来源: 评论