An attempt to control induction motors with high dynamic performance and maximal power efficiency by means of decoupling of motor speed (or motor torque) and rotor flux is discussed. For maximal power efficiency, the ...
详细信息
An attempt to control induction motors with high dynamic performance and maximal power efficiency by means of decoupling of motor speed (or motor torque) and rotor flux is discussed. For maximal power efficiency, the squared rotor flux is adjusted according to the Fibonacci search method until the measured power input reaches the minimum. Since the motor speed is dynamically decoupled from the rotor flux, this can be done successfully without any degradation of motor speed responses. Furthermore, the performance of the control scheme is robust with respect to variations in rotor resistance because an identification algorithm for rotor resistance is used.< >
作者:
DUNIETZ, ISHSU, JLCMCEACHERN, MTSTOCKING, JHSWARTZ, MATROMBLY, RMThe authors
Irwin S. Dunietz John L.C. Hsu Michael T. McEachern James H. Stocking Mark A. Swartz andRodney M. Tromblyare responsible for design and development of the Manufacturing Process Control System. Mr. Dunietz joined AT&T in 1980. He is a member of the technical staff in the Manufacturing Information Automation department at AT&T Engineering Research Center Princeton New Jersey. He received an A.B. in mathematics from Cornell University and an M.S.E. in computer science from Princeton University. Mr. Hsu who joined AT&T in 1970 is a department head in the Manufacturing Information Automation department at the Engineering Research Center. He received an M.S. in electrical engineering from the University of Missouri. Mr. McEachern joined AT&T in 1962 and is a supervisor in the 5ESS™ Line Unit Manufacturing department at AT&T Technologies in Oklahoma City Oklahoma. He is responsible for the manufacturing process control center in Oklahoma City which provides computerized support for all circuit pack manufacturing. Mr. Stocking who joined AT&T in 1975 is a supervisor in the Manufacturing Information Automation department at the Engineering Research Center. He received a B.S. in chemical engineering from Rensselaer Polytechnic Institute and a Ph.D. in chemical engineering from the University of California Berkeley. Mr. Swartz joined AT&T in 1980 and is a member of the technical staff in the Manufacturing Information Automation department at the Engineering Research Center. He received an A.B. in computer science from Cornell University and an M.S. in computer science from Rutgers—The State University. Mr. Trombly who joined AT&T in 19 78 is an assistant manager at the AT&T Merrimack Valley Works in Massachusetts. Previously he was a supervisor at the Engineering Research Center. He holds a B.S. in computers and systems engineering and an M.S.E.E. from Rensselaer Polytechnic Institute.
The central challenge of all manufacturing is making products to the right standards and delivering them at the right time. AT&T is upgrading its corporate and factory resource planning systems to improve control ...
详细信息
The central challenge of all manufacturing is making products to the right standards and delivering them at the right time. AT&T is upgrading its corporate and factory resource planning systems to improve control of day-to-day manufacturing. The Manufacturing Process control System (MPCS), developed at the AT&T engineeringresearch Center (ERC), provides this support. MPCS connects the shop floor with production scheduling, accounting, product data archive, and engineering support systems.
A ship design methodology is presented for developing hull forms that attain improved performance in both seakeeping and resistance. Contrary to traditional practice, the methodology starts with developing a seakeepin...
A ship design methodology is presented for developing hull forms that attain improved performance in both seakeeping and resistance. Contrary to traditional practice, the methodology starts with developing a seakeeping-optimized hull form without making concessions to other performance considerations, such as resistance. The seakeeping-optimized hull is then modified to improve other performance characteristics without degrading the seakeeping. Presented is a point-design example produced by this methodology. Merits of the methodology and the point design are assessed on the basis of theoretical calculations and model experiments. This methodology is an integral part of the Hull Form Design System (HFDS) being developed for computer-supported naval ship design. The modularized character of HFDS and its application to hull form development are discussed.
One of the most serious problems encountered in Naval steam plants following World War II was the unreliable performance of boiler and main feedpump pneumatic controlsystems. In addition to control component and syst...
One of the most serious problems encountered in Naval steam plants following World War II was the unreliable performance of boiler and main feedpump pneumatic controlsystems. In addition to control component and system design deficiencies, these controlsystems suffered from inadequate methods to measure and adjust system alignment. This paper describes the development of a set of procedures for on-line alignment verification (OLV) of pneumatic main boiler and feedpump controlsystems. The procedures are designed for use by N avy control system technicians and, in addition to on-line alignment verification, provide guidance for troubleshooting and for performing system alignment. Procedure static checks measure steady state steaming performance and OLV procedure dynamic checks measure the ability of the boiler and controlsystems to respond to load changes. The paper describes typical control system characteristics that influence OLV procedure content and the supporting analysis that was used to establish alignment criteria ranges that satisfy both steady state and transient performance requirements. Also described is the alignment criteria tolerance analysis along with the steps involved in a typical OLV check procedure development. Descriptions of the various OLV checks, troubleshooting procedures and alignment procedures are provided. Typical shipboard implementation requirements are described and experience to date with the procedures is provided along with a status report on OLV procedure implementations.
作者:
MELLIS, JGPLATO, AIREIN, RJJames G. Mellis:attended Central Institute in Kansas City
Mo. where he graduated in Electronic Engineering Technology. He later attended the University of Minn. in Minneapolis. At present he works in the Manning and Controls Integration Section of the Naval Sea Systems Command. Mr. Mellis is responsible for developing manpower requirements for ship design and for the coordination of shipboard automation designs with the U.S. Navy's manpower policies and availability. Mr. Mellis is currently developing manpower requirements for the U.S. Navy's DDGX ship design. In this capacity he has examined proposals for shipboard manpower reductions through the use of automation and remote control techniques. Another project where Mr. Mellis is heavily engaged in is the Ship Systems Engineering Standards (SSES) development. Mr. Mellis is the assistant project manager for the test and evaluation and producibility aspects of the SSES project. Previously prior to his employment with NAVSEA Mr. Mellis worked for General Dynamics/Electronic Division as a Senior Field Engineer on the Apollo Instrumentation Ships (i.e. Vanguard Restone Mercury). He was responsible for Central Data Processing Systems on the three ships. Artis I. Plato:is the Head of the Manning and Controls Integration Section of the Naval Sea Systems Command (NAVSEA). He is responsible for the development of accurate manpower requirements for all new construction and major overhaul ship projects for the U.S. NAVY. In addition
Mr. Plato must coordinate shipboard controls integration and automation aspects with manpower requirements to insure that a compatible solution is developed. Mr. Plato began his professional career in 1956 at the New York Naval Shipyard. There
he worked in the Internal Combustion Engine and Shipboard Elevator Section. During 1957 and 1958 he was called up for active duty with the U.S. Army Corps of Engineers. He served in Europe with various Construction Engineers units. After release from active duty he returned to the shipyard. In 19
This paper examines the recent experience in the UNITED STATES NAVY where automation has been introduced into new ship designs. While other attributes are recognized in the introduction of automated shipboard systems,...
This paper examines the recent experience in the UNITED STATES NAVY where automation has been introduced into new ship designs. While other attributes are recognized in the introduction of automated shipboard systems, such as the ability to respond more quickly in combat situations, this paper focuses on the effects of automation upon ship manpower requirements. Specific examples show that expected reductions in manning were not achieved in recent ship designs where automation was incorporated for that purpose. While the use of shipboard automation is not without its critics, the U.S. Fleet appears to have accepted the concept. User feedback addresses the issues of reliability, the provisions for backup systems, the need for better qualified personnel and the concern about maintenance workload. The authors provide specific recommendations for improved guidance to ship designers to more effectively apply automation in the ship design process.
The series Advances in Industrial control aims to report and encourage technology transfer in controlengineering. The rapid development of control technology has an impact on all areas of the control discipline. New ...
详细信息
ISBN:
(数字)9781846283345
ISBN:
(纸本)9781852339821;9781849969895
The series Advances in Industrial control aims to report and encourage technology transfer in controlengineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. In some areas of manufacturing, the elements of a flexible manufacturing system form the key components of the process line. These key components are four-fold: a set of programmable robots and machines, an automated materia- handling system that allows parts to be freely routed and re-routed, a buffer storage system where parts and partly-assembled components can wait until required for further processing and assembly and finally, a supervisory control system. The technology employed to coordinate and control all these components as a working system is usually based on programmable logic controllers. The use of this automation hardware and software in manufacturing is designed to yield significant cost reductions and to enhance quality.
暂无评论