DC-DC converters are essential components in power supply applications, portable electronics, renewable energy systems, and various other industries. An accurate system model is crucial for the development of the cont...
详细信息
Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine *** feature in a dataset has 2n possible subsets,making it challenging to select the optimum collection of featu...
详细信息
Selecting the most relevant subset of features from a dataset is a vital step in data mining and machine *** feature in a dataset has 2n possible subsets,making it challenging to select the optimum collection of features using typical *** a result,a new metaheuristicsbased feature selection method based on the dipper-throated and grey-wolf optimization(DTO-GW)algorithms has been developed in this *** can result when the selection of features is subject to metaheuristics,which can lead to a wide range of ***,we adopted hybrid optimization in our method of optimizing,which allowed us to better balance exploration and harvesting chores more *** propose utilizing the binary DTO-GW search approach we previously devised for selecting the optimal subset of *** the proposed method,the number of features selected is minimized,while classification accuracy is *** test the proposed method’s performance against eleven other state-of-theart approaches,eight datasets from the UCI repository were used,such as binary grey wolf search(bGWO),binary hybrid grey wolf,and particle swarm optimization(bGWO-PSO),bPSO,binary stochastic fractal search(bSFS),binary whale optimization algorithm(bWOA),binary modified grey wolf optimization(bMGWO),binary multiverse optimization(bMVO),binary bowerbird optimization(bSBO),binary hysteresis optimization(bHy),and binary hysteresis optimization(bHWO).The suggested method is superior 4532 CMC,2023,vol.74,no.2 and successful in handling the problem of feature selection,according to the results of the experiments.
Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in ***,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric neural act...
详细信息
Background:Previous studies have demonstrated the underlying neurophysiologic mechanism during general anesthesia in ***,the mechanism of propofol-induced moderate-deep sedation(PMDS)in modulating pediatric neural activity remains unknown,which therefore was investigated in the present study based on functional magnetic resonance imaging(fMRI).Methods:A total of 41 children(5.10�1.14 years,male/female 21/20)with fMRI were employed to construct the functional connectivity network(FCN).The network communication,graph-theoretic properties,and network hub identification were statistically analyzed(t test and Bonferroni correction)between sedation(21 children)and awake(20 children)*** involved analyses were established on the whole-brain FCN and seven sub-networks,which included the default mode network(DMN),dorsal attentional network(DAN),salience network(SAN),auditory network(AUD),visual network(VIS),subcortical network(SUB),and other networks(Other).Results:Under PMDS,significant decreases in network communication were observed between SUB-VIS,SUB-DAN,and VIS-DAN,and between brain regions from the temporal lobe,limbic system,and subcortical ***,no significant decrease in thalamus-related communication was *** graph-theoretic properties were significantly decreased in the sedation group,and all graphical features of the DMN showed significant group *** superior parietal cortex with different neurological functions was identified as a network hub that was not greatly ***:Although the children had a depressed level of neural activity under PMDS,the crucial thalamus-related communication was maintained,and the network hub superior parietal cortex stayed active,which highlighted clinical prac-tices that the human body under PMDS is still perceptible to external stimuli and can be awakened by sound or touch.
Existing explainability approaches for convolutional neural networks (CNNs) are mainly applied after training (post-hoc) which is generally unreliable. Ante-hoc explainers trained simultaneously with the CNN are more ...
详细信息
In this research, nature inspired metaheuristic optimization algorithms: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) Techniques are formulated to tune optimal combinations of PID controller parameters...
详细信息
We introduce a novel differentially private algorithm for online federated learning that employs temporally correlated noise to enhance utility while ensuring privacy of continuously released models. To address challe...
详细信息
Obstacle avoidance is a significant research content in multi-agents formation control. The obstacle avoidance of multi-agents systems is investigated in this paper, and an improved artificial potential field method (...
详细信息
Wind power is one of the sustainable ways to generate renewable *** recent years,some countries have set renewables to meet future energy needs,with the primary goal of reducing emissions and promoting sustainable gro...
详细信息
Wind power is one of the sustainable ways to generate renewable *** recent years,some countries have set renewables to meet future energy needs,with the primary goal of reducing emissions and promoting sustainable growth,primarily the use of wind and solar *** achieve the prediction of wind power generation,several deep and machine learning models are constructed in this article as base *** regression models are Deep neural network(DNN),k-nearest neighbor(KNN)regressor,long short-term memory(LSTM),averaging model,random forest(RF)regressor,bagging regressor,and gradient boosting(GB)*** addition,data cleaning and data preprocessing were performed to the *** dataset used in this study includes 4 features and 50530 *** accurately predict the wind power values,we propose in this paper a new optimization technique based on stochastic fractal search and particle swarm optimization(SFSPSO)to optimize the parameters of LSTM *** evaluation criteria were utilized to estimate the efficiency of the regression models,namely,mean absolute error(MAE),Nash Sutcliffe Efficiency(NSE),mean square error(MSE),coefficient of determination(R2),root mean squared error(RMSE).The experimental results illustrated that the proposed optimization of LSTM using SFS-PSO model achieved the best results with R2 equals 99.99%in predicting the wind power values.
The economic dispatch problem (EDP) is crucial in optimizing and controlling power systems. As modern power system become more complex, traditional centralized communication methods are becoming less reliable. Therefo...
详细信息
Industry 4.0 technologies are profoundly transforming the assembly, integration, and testing (AIT) processes of aerospace components, with augmented reality (AR) and cyber-physical systems (CPS) at the forefront of th...
详细信息
暂无评论