Since distributed control strategies can effectively reduce the operating load of the central processor, they have become a prominent research direction in the field of controlling multiple manipulators. However, exis...
详细信息
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI) systems under additive stochastic disturbances. It first constructs a probabilistic invariant set...
详细信息
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI) systems under additive stochastic disturbances. It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system *** with enhanced robust tubes, the chance constraints are then formulated into a deterministic form. To alleviate the online computational burden, a novel event-triggered stochastic model predictive control is developed, where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance. Two triggering parameters σ and γ are used to adjust the frequency of solving the optimization problem. The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined. Finally, numerical studies on the control of a heating, ventilation, and air conditioning(HVAC) system confirm the efficacy of the proposed control.
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking pe...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking performance while satisfying the state and input constraints, even when system matrices are not available. We first establish a sufficient condition necessary for the existence of a solution pair to the regulator equation and propose a data-based approach to obtain the feedforward and feedback control gains for state feedback control using linear programming. Furthermore, we design a refined Luenberger observer to accurately estimate the system state, while keeping the estimation error within a predefined set. By combining output regulation theory, we develop an output feedback control strategy. The stability of the closed-loop system is rigorously proved to be asymptotically stable by further leveraging the concept of λ-contractive sets.
This study investigates the controllability of a general heterogeneous networked sampled-data system(HNSS) consisting of nonidentical node systems, where the inner coupling between any pair of nodes can be described b...
详细信息
This study investigates the controllability of a general heterogeneous networked sampled-data system(HNSS) consisting of nonidentical node systems, where the inner coupling between any pair of nodes can be described by a unique *** signals on control and transmission channels are sampled and held by zero-order holders, and the control sampling period of each node can be different. Necessary and sufficient controllability conditions are developed for the general HNSS, using the Smith normal form and matrix equations, respectively. The HNSS in specific topology or dynamic settings is discussed subsequently with easier-to-verify conditions derived. These heterogeneous factors have been determined to independently or jointly affect the controllability of networked sampled-data systems. Notably, heterogeneous sampling periods have the potential to enhance the overall controllability, but not for systems with some special dynamics. When the node dynamics are heterogeneous,the overall system can be controllable even if it is topologically uncontrollable. In addition, in several typical heterogeneous sampled-data multi-agent systems, pathological sampling of single-node systems will necessarily cause overall uncontrollability.
The explosive growth of information on the internet poses great challenges to users. In response to the above issues, this article studies the construction of an intelligent recommendation system for internet informat...
详细信息
In the context of Intelligent Transportation Systems (ITS), the role of vehicle detection and classification is indispensable for streamlining transportation management, refining traffic control, and conducting in-dep...
详细信息
Formation control is currently a popular field of research due to the increasing application areas of unmanned aerial vehicles. Of concern is the stability of unmanned aerial vehicles (UAVs) formation while tracking e...
详细信息
A sliding mode control algorithm based on a linear extended state observer is proposed to address the multi-source uncertainty of uncalibrated visual servoing in robotic arms. Uncertainty, nonlinearity, coupling, exte...
详细信息
This article addresses the challenge of state observer design for sliding mode security control in Markov jump cyber-physical systems subjected to stochastic injection attacks. To enhance network efficiency, a dynamic...
详细信息
Floating wind turbines (FWTs) hold significant potential for the exploitation of offshore renewable energy resources. Nevertheless, prior to the construction of FWTs, it is imperative to tackle several critical challe...
详细信息
Floating wind turbines (FWTs) hold significant potential for the exploitation of offshore renewable energy resources. Nevertheless, prior to the construction of FWTs, it is imperative to tackle several critical challenges, especially the issue of performance degradation under combined wind and wave loads. This study initiates with the development of a simplified nonlinear dynamical model for a semi-submersible FWT. In particular, both the rotor dynamics and the finite rotations of the platform are considered in presented modeling approach, thereby effectively capturing the complex interplay between the platform, tower, nacelle, and rotor under combined wind and wave loads. Subsequently, based on the developed FWT model, a novel adaptive nonlinear pitch controller is formulated with the goal of striking a trade-off between regulating power generation and reducing platform motion. Notably, the proposed control strategy adopts a continuous control approach, strategically beneficial in circumventing the chattering phenomenon commonly associated with sliding mode control. Furthermore, the controller integrates an online approximator and a robust integral of the sign of the tracking error, facilitating real-time learning of system unknown dynamics while compensating for bounded disturbances. Finally, both the accuracy of the established nonlinear FWT model in predicting key dynamics and the superiority of the presented pitch controller are validated through comprehensive comparative studies. Note to Practitioners - This paper addresses the conflicting goals between power regulation and load mitigation for floating wind turbines (FWTs) to ensure the reliable operation of wind turbine systems. This remains an ongoing challenge due to the inherent complexity of existing FWT models, frequently resulting in controllers crafted using linearized representations that fail to accommodate real-world uncertainties effectively. Through the utilization of a simplified physical-based n
暂无评论