Research on real-time data visualization methods is necessary to achieve the most accurate and clear representation of information. Creating specific boards and modifying current platforms are two key tasks in perform...
详细信息
In recent years, maximizing the energy conversion performance of photovoltaic (PV) systems has become increasingly important, especially in the context of sustainable energy development. This study utilizes Internet o...
详细信息
The integration of machine learning (ML) into mobile applications presents unique challenges, particularly in resource-constrained environments such as iOS devices. Skin lesion classification is a critical task in der...
详细信息
With the increase of energy consumption worldwide in several domains such as industry,education,and transportation,several technologies played an influential role in energy conservation such as the Internet of Things(I...
详细信息
With the increase of energy consumption worldwide in several domains such as industry,education,and transportation,several technologies played an influential role in energy conservation such as the Internet of Things(IoT).In this article,we describe the design and implementation of an IoT-based energy conser-vation smart classroom system that contributes to energy conservation in the edu-cation *** proposed system not only allows the user to access and control IoT devices(e.g.,lights,projectors,and air conditions)in real-time,it also has the capability to aggregate the estimated energy consumption of an IoT device,the smart classroom,and the building based on the energy consumption and cost model that we ***,the proposed model aggregates the estimated energy cost according to the Saudi Electricity Company(SEC)***,the model aggregates in real-time the estimated energy conservation percentage and estimated money-saving percentage compared to data collected when the system wasn't *** feasibility and benefits of our system have been validated on a real-world scenario which is a classroom in the college of computerscience and engineering,Taibah University,Yanbu *** results of the experimental studies are promising in energy conservation and cost-saving when using our proposed system.
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past *** work has been put into its development in various aspects such as architectural atte...
详细信息
Wireless Sensor Networks(WSNs)are one of the best technologies of the 21st century and have seen tremendous growth over the past *** work has been put into its development in various aspects such as architectural attention,routing protocols,location exploration,time exploration,*** research aims to optimize routing protocols and address the challenges arising from conflicting objectives in WSN environments,such as balancing energy consumption,ensuring routing reliability,distributing network load,and selecting the shortest *** optimization techniques have shown success in achieving one or two objectives but struggle to achieve the right balance between multiple conflicting *** address this gap,this paper proposes an innovative approach that integrates Particle Swarm Optimization(PSO)with a fuzzy multi-objective *** proposed method uses fuzzy logic to effectively control multiple competing objectives to represent its major development beyond existing methods that only deal with one or two *** search efficiency is improved by particle swarm optimization(PSO)which overcomes the large computational requirements that serve as a major drawback of existing *** PSO algorithm is adapted for WSNs to optimize routing paths based on fuzzy multi-objective *** fuzzy logic framework uses predefined membership functions and rule-based reasoning to adjust routing *** adjustments influence PSO’s velocity updates,ensuring continuous adaptation under varying network *** proposed multi-objective PSO-fuzzy model is evaluated using NS-3 *** results show that the proposed model is capable of improving the network lifetime by 15.2%–22.4%,increasing the stabilization time by 18.7%–25.5%,and increasing the residual energy by 8.9%–16.2% compared to the state-of-the-art *** proposed model also achieves a 15%–24% reduction in load variance,demonstrating balanced routing and extended net
Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function,a brand-new tristable locally active memristor model is first prop...
详细信息
Due to the fact that a memristor with memory properties is an ideal electronic component for implementation of the artificial neural synaptic function,a brand-new tristable locally active memristor model is first proposed in this ***,a novel four-dimensional fractional-order memristive cellular neural network(FO-MCNN)model with hidden attractors is constructed to enhance the engineering feasibility of the original CNN model and its ***,its hardware circuit implementation and complicated dynamic properties are investigated on multi-simulation ***,it is used toward secure communication application *** it as the pseudo-random number generator(PRNG),a new privacy image security scheme is designed based on the adaptive sampling rate compressive sensing(ASR-CS)***,the simulation analysis and comparative experiments manifest that the proposed data encryption scheme possesses strong immunity against various security attack models and satisfactory compression performance.
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions i...
详细信息
Regular exercise is a crucial aspect of daily life, as it enables individuals to stay physically active, lowers thelikelihood of developing illnesses, and enhances life expectancy. The recognition of workout actions in videostreams holds significant importance in computer vision research, as it aims to enhance exercise adherence, enableinstant recognition, advance fitness tracking technologies, and optimize fitness routines. However, existing actiondatasets often lack diversity and specificity for workout actions, hindering the development of accurate recognitionmodels. To address this gap, the Workout Action Video dataset (WAVd) has been introduced as a significantcontribution. WAVd comprises a diverse collection of labeled workout action videos, meticulously curated toencompass various exercises performed by numerous individuals in different settings. This research proposes aninnovative framework based on the Attention driven Residual Deep Convolutional-Gated Recurrent Unit (ResDCGRU)network for workout action recognition in video streams. Unlike image-based action recognition, videoscontain spatio-temporal information, making the task more complex and challenging. While substantial progresshas been made in this area, challenges persist in detecting subtle and complex actions, handling occlusions,and managing the computational demands of deep learning approaches. The proposed ResDC-GRU Attentionmodel demonstrated exceptional classification performance with 95.81% accuracy in classifying workout actionvideos and also outperformed various state-of-the-art models. The method also yielded 81.6%, 97.2%, 95.6%, and93.2% accuracy on established benchmark datasets, namely HMDB51, Youtube Actions, UCF50, and UCF101,respectively, showcasing its superiority and robustness in action recognition. The findings suggest practicalimplications in real-world scenarios where precise video action recognition is paramount, addressing the persistingchallenges in the field. TheWAVd datas
This paper attempts to conceptualize a potent methodology by combining the African vultures optimization algorithm (AVOA) with a multi-orthogonal-oppositional strategy (M2OS), named AVO-M2OS, to address the nonconvexi...
详细信息
This paper attempts to conceptualize a potent methodology by combining the African vultures optimization algorithm (AVOA) with a multi-orthogonal-oppositional strategy (M2OS), named AVO-M2OS, to address the nonconvexity and multidimensional nature of the combined heat and power economic dispatch (CHPED) problem under both crisp and uncertainty aspects. The AVO-M2OS uses the M2OS to simultaneously explore the search region, improving solutions’ diversity as well as solution quality. Therefore, AVO-M2OS can perform deeper exploration and exploitation features and thus mitigate the trapping at local optima, especially when tackling the more complicated nature of the CHPED problem. A three-stage analysis is conducted to assess the effectiveness of the proposed AVO-M2OS algorithm. During the first stage, the algorithm’s performance is evaluated on benchmark problems such as CEC 2005 and CEC 2019, employing statistical verifications and convergence characteristics. In the second stage, the significance of the results is evaluated using the nonparametric Friedman test to demonstrate that the results did not occur by chance. The results indicate that the AVO-M2OS algorithm outperforms the best existing algorithm (AVOA) by an average rank of the Friedman test exceeding 26% for the CEC 2005 suite while outperforming the gray wolf optimization (GWO) by 60% for the CEC 2019 suite. Moreover, the AVO-M2OS demonstrates exceptional performance compared to existing state-of-the-art algorithms, surpassing the best algorithm available by an average rank of the Friedman test that exceeds 41%. Finally, the AVO-M2OS’s applicability is achieved by minimizing the operational costs by finding the optimal power and heat generation scheduling for the CHPED problem. The recorded results realize that the AVO-M2OS algorithm offers accurate performance compared to competing optimizers, where it saves the operational cost of the 48-unit system by 24% on the original AVO variant. Furthermore, the u
Addressing the global challenge of ensuring a consistent and abundant supply of fresh fruit, particularly in the context of fruit crops, is hindered by the prevalence of plant diseases. These diseases directly impact ...
详细信息
Addressing the global challenge of ensuring a consistent and abundant supply of fresh fruit, particularly in the context of fruit crops, is hindered by the prevalence of plant diseases. These diseases directly impact the quality of fruits, leading to a decline in overall agricultural production. Mango leaf diseases pose significant threats to global mango production, necessitating accurate and efficient classification techniques for timely disease management. Our study focuses on introducing MangoLeafXNet, a customized Convolutional Neural Network (CNN) architecture specifically tailored for the classification of mango leaf diseases, along with a healthy class. Our proposed model comprises six layers optimized to capture intricate disease patterns, demonstrating superior performance compared with prevalent pre-trained models. The model is trained and evaluated on three publicly available datasets: MangoLeafBD (4000 images across 8 classes), MangoPest (16 pest classes including healthy leaves), and MLDID (3000 high-resolution images across 5 classes). Our model demonstrated exceptional classification performance, attaining 99.8% accuracy, 99.62% recall, 99.5% precision, and an F1-score of 99.56%. Further validation on the MangoPest dataset and the Mango Leaf Disease Identification Dataset (MLDID) resulted in accuracies of 96.31% and 96.33%, respectively, confirming the robustness and adaptability of MangoLeafXNet across different datasets. Additionally, we incorporate Explainable AI techniques, including GRAD-CAM, Saliency Map, and LIME to enhance the interpretability of our model. We deployed Gradio web interface to create an interactive interface that allows users to upload images of mango leaves and get real-time classification and validation results along with confidence scores. This contribution not only advances the state-of-the-art in mango leaf disease classification but also offers promising prospects for real-time disease diagnosis and precision agriculture
This exploration paper presents a versatile application created involving Android Studio for organic product characterization, supporting ranchers in effectively classifying organic products in view of their visual el...
详细信息
暂无评论