Efficient energy management is a cornerstone of advancing cognitive cities,where AI,IoT,and cloud computing seamlessly integrate to meet escalating global energy *** this context,the ability to forecast electricity co...
详细信息
Efficient energy management is a cornerstone of advancing cognitive cities,where AI,IoT,and cloud computing seamlessly integrate to meet escalating global energy *** this context,the ability to forecast electricity consumption with precision is vital,particularly in residential settings where usage patterns are highly variable and *** study presents an innovative approach to energy consumption forecasting using a bidirectional Long Short-Term Memory(LSTM)*** a dataset containing over twomillionmultivariate,time-series observations collected froma single household over nearly four years,ourmodel addresses the limitations of traditional time-series forecasting methods,which often struggle with temporal dependencies and non-linear *** bidirectional LSTM architecture processes data in both forward and backward directions,capturing past and future contexts at each time step,whereas existing unidirectional LSTMs consider only a single temporal *** design,combined with dropout regularization,leads to a 20.6%reduction in RMSE and an 18.8%improvement in MAE over conventional unidirectional LSTMs,demonstrating a substantial enhancement in prediction accuracy and *** to existing models—including SVM,Random Forest,MLP,ANN,and CNN—the proposed model achieves the lowest MAE of 0.0831 and RMSE of 0.2213 during testing,significantly outperforming these *** results highlight the model’s superior ability to navigate the complexities of energy usage patterns,reinforcing its potential application in AI-driven IoT and cloud-enabled energy management systems for cognitive *** integrating advanced machine learning techniqueswith IoT and cloud infrastructure,this research contributes to the development of intelligent,sustainable urban environments.
Medical data are subject to privacy regulations, which severely limit AI specialists who wish to construct decision support systems for medicine. Large amounts of this data are tabular, indicating that they are organi...
详细信息
We present a faithful geometric picture for genuine tripartite entanglement of discrete, continuous, and hybrid quantum systems. We first find that the triangle relation Ei|jkα≤Ej|ikα+Ek|ijα holds for all subaddit...
详细信息
We present a faithful geometric picture for genuine tripartite entanglement of discrete, continuous, and hybrid quantum systems. We first find that the triangle relation Ei|jkα≤Ej|ikα+Ek|ijα holds for all subadditive bipartite entanglement measure E, all permutations under parties i,j,k, all α∈[0,1], and all pure tripartite states. Then, we rigorously prove that the nonobtuse triangle area, enclosed by side Eα with 0<α≤1/2, is a measure for genuine tripartite entanglement. Finally, it is significantly strengthened for qubits that given a set of subadditive and nonsubadditive measures, some state is always found to violate the triangle relation for any α>1, and the triangle area is not a measure for any α>1/2. Our results pave the way to study discrete and continuous multipartite entanglement within a unified framework.
This paper investigates the application of GradCAM, an explainable AI (XAI) technique, to enhance the transparency and precision of fingerprint authentication systems in forensics, particularly in detecting fingerprin...
详细信息
作者:
Wanjari, KetanVerma, Prateek
Department of Computer Science and Engineering Faculty of Engineering and Technology Maharashtra Wardha442001 India
Department of Artificial Intelligence and Data Science Faculty of Engineering and Technology Maharashtra Wardha442001 India
Modern image recognition has experienced dramatic improvements because of Machine Learning and Deep Learning algorithms together. This study investigates CNNs and SVMs for recognition enhancement while reviewing image...
详细信息
作者:
Wanjari, KetanVerma, Prateek
Faculty of Engineering and Technology Department of Computer Science and Engineering Maharashtra Wardha442001 India
Faculty of Engineering and Technology Department of Artificial Intelligence and Data Science Maharashtra Wardha442001 India
Skin cancer is the most commonly reported type of cancer globally and one of the few cancers that can be effectively treated if detected in its early stages. Recent advancements in artificial intelligence (AI) have si...
详细信息
Presently,precision agriculture processes like plant disease,crop yield prediction,species recognition,weed detection,and irrigation can be accom-plished by the use of computer vision(CV)*** plays a vital role in infl...
详细信息
Presently,precision agriculture processes like plant disease,crop yield prediction,species recognition,weed detection,and irrigation can be accom-plished by the use of computer vision(CV)*** plays a vital role in influencing crop *** wastage and pollution of farmland's natural atmosphere instigated by full coverage chemical herbicide spraying are *** the proper identification of weeds from crops helps to reduce the usage of herbicide and improve productivity,this study presents a novel computer vision and deep learning based weed detection and classification(CVDL-WDC)model for precision *** proposed CVDL-WDC technique intends to prop-erly discriminate the plants as well as *** proposed CVDL-WDC technique involves two processes namely multiscale Faster RCNN based object detection and optimal extreme learning machine(ELM)based weed *** parameters of the ELM model are optimally adjusted by the use of farmland fertility optimization(FFO)algorithm.A comprehensive simulation analysis of the CVDL-WDC technique against benchmark dataset reported the enhanced out-comes over its recent approaches interms of several measures.
Wheat is the most important cereal crop,and its low production incurs import pressure on the *** fulfills a significant portion of the daily energy requirements of the human *** wheat disease is one of the major facto...
详细信息
Wheat is the most important cereal crop,and its low production incurs import pressure on the *** fulfills a significant portion of the daily energy requirements of the human *** wheat disease is one of the major factors that result in low production and negatively affects the national ***,timely detection of wheat diseases is necessary for improving *** CNN-based architectures showed tremendous achievement in the image-based classification and prediction of crop ***,these models are computationally expensive and need a large amount of training *** this research,a light weighted modified CNN architecture is proposed that uses eight layers particularly,three convolutional layers,three SoftMax layers,and two flattened layers,to detect wheat diseases *** high-resolution images were collected from the fields in Azad Kashmir(Pakistan)and manually annotated by three human *** convolutional layers use 16,32,and 64 *** filter uses a 3×3 kernel *** strides for all convolutional layers are set to *** this research,three different variants of datasets are *** variants S1-70%:15%:15%,S2-75%:15%:10%,and S3-80%:10%:10%(train:validation:test)are used to evaluate the performance of the proposed *** extensive experiments revealed that the S3 performed better than S1 and S2 datasets with 93%*** experiment also concludes that a more extensive training set with high-resolution images can detect wheat diseases more accurately.
In 2023,pivotal advancements in artificial intelligence(AI)have significantly *** that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure...
详细信息
In 2023,pivotal advancements in artificial intelligence(AI)have significantly *** that in mind,traditional methodologies,notably the p-y approach,have struggled to accurately model the complex,nonlinear soil-structure interactions of laterally loaded large-diameter drilled *** study undertakes a rigorous evaluation of machine learning(ML)and deep learning(DL)techniques,offering a comprehensive review of their application in addressing this geotechnical challenge.A thorough review and comparative analysis have been carried out to investigate various AI models such as artificial neural networks(ANNs),relevance vector machines(RVMs),and least squares support vector machines(LSSVMs).It was found that despite ML approaches outperforming classic methods in predicting the lateral behavior of piles,their‘black box'nature and reliance only on a data-driven approach made their results showcase statistical robustness rather than clear geotechnical insights,a fact underscored by the mathematical equations derived from these ***,the research identified a gap in the availability of drilled shaft datasets,limiting the extendibility of current findings to large-diameter *** extensive dataset,compiled from a series of lateral loading tests on free-head drilled shaft with varying properties and geometries,was introduced to bridge this *** paper concluded with a direction for future research,proposes the integration of physics-informed neural networks(PINNs),combining data-driven models with fundamental geotechnical principles to improve both the interpretability and predictive accuracy of AI applications in geotechnical engineering,marking a novel contribution to the field.
Electrocardiogram(ECG)signal is a measure of the heart’s electrical ***,ECG detection and classification have benefited from the use of computer-aided systems by *** goal of this paper is to improve the accuracy of E...
详细信息
Electrocardiogram(ECG)signal is a measure of the heart’s electrical ***,ECG detection and classification have benefited from the use of computer-aided systems by *** goal of this paper is to improve the accuracy of ECG classification by combining the Dipper Throated Optimization(DTO)and Differential Evolution Algorithm(DEA)into a unified algorithm to optimize the hyperparameters of neural network(NN)for boosting the ECG classification *** addition,we proposed a new feature selection method for selecting the significant feature that can improve the overall *** prove the superiority of the proposed approach,several experimentswere conducted to compare the results achieved by the proposed approach and other competing ***,statistical analysis is performed to study the significance and stability of the proposed approach using Wilcoxon and ANOVA *** results confirmed the superiority and effectiveness of the proposed *** classification accuracy achieved by the proposed approach is(99.98%).
暂无评论