CircRNA-disease association(CDA) can provide a new direction for the treatment of diseases. However,traditional biological experiment is time-consuming and expensive, this urges us to propose the reliable computationa...
详细信息
CircRNA-disease association(CDA) can provide a new direction for the treatment of diseases. However,traditional biological experiment is time-consuming and expensive, this urges us to propose the reliable computational model to predict the associations between circRNAs and diseases. And there is existing more and more evidence indicates that the combination of multi-biomolecular information can improve the prediction accuracy. We propose a novel computational model for CDA prediction named MBCDA, we collect the multi-biomolecular information including circRNA, disease, miRNA and lncRNA based on 6 databases, and construct three heterogeneous network among them, then the multi-heads graph attention networks are applied to these three networks to extract the features of circRNAs and diseases from different views, the obtained features are put into variational graph auto-encoder(VGAE) network to learn the latent distributions of the nodes, a fully connected neural network is adopted to further process the output of VGAE and uses sigmoid function to obtain the predicted probabilities of circRNA-disease *** a result, MBCDA achieved the values of AUC and AUPR under 5-fold cross-validation of 0.893 and 0.887. MBCDA was applied to the analysis of the top-25 predicted associations between circRNAs and diseases, these experimental results show that our proposed MBCDA is a powerful computational model for CDA prediction.
Magnesium chips were coated with a high concentration of graphite using a binder and were used as the raw material for injection molding. The microstructure of the magnesium injection-molded product with added graphit...
详细信息
During the COVID-19 crisis, the need to stay at home has increased dramatically. In addition, the number of sickpeople, especially elderly persons, has increased exponentially. In such a scenario, home monitoring of p...
详细信息
During the COVID-19 crisis, the need to stay at home has increased dramatically. In addition, the number of sickpeople, especially elderly persons, has increased exponentially. In such a scenario, home monitoring of patientscan ensure remote healthcare at home using advanced technologies such as the Internet of Medical Things (IoMT).The IoMT can monitor and transmit sensitive health data;however, it may be vulnerable to various attacks. In thispaper, an efficient healthcare security system is proposed for IoMT applications. In the proposed system, themedical sensors can transmit sensed encrypted health data via a mobile application to the doctor for ***, three consortium blockchains are constructed for load balancing of transactions and reducing transactionlatency. They store the credentials of system entities, doctors' prescriptions and recommendations according to thedata transmitted via mobile applications, and the medical treatment process. Besides, cancelable biometrics areused for providing authentication and increasing the security of the proposed medical system. The investigationalresults show that the proposed system outperforms existing work where the proposed model consumed lessprocessing time by values of 18%, 22%, and 40%, and less energy for processing a 200 KB file by values of 9%,13%, and 17%. Finally, the proposed model consumed less memory usage by values of 7%, 7%, and 18.75%. Fromthese results, it is clear that the proposed system gives a very reliable and secure performance for efficientlysecuring medical applications.
This research work focuses on food recognition, especially, the identification of the ingredients from food images. Here, the developed model includes two stages namely: 1) feature extraction;2) classification. Initia...
详细信息
Handwriting is a unique and significant human feature that distinguishes them from one *** are many researchers have endeavored to develop writing recognition systems utilizing specific signatures or symbols for perso...
详细信息
Handwriting is a unique and significant human feature that distinguishes them from one *** are many researchers have endeavored to develop writing recognition systems utilizing specific signatures or symbols for person identification through ***,such systems are susceptible to forgery,posing security *** response to these challenges,we propose an innovative hybrid technique for individual identification based on independent handwriting,eliminating the reliance on specific signatures or *** response to these challenges,we propose an innovative hybrid technique for individual identification based on independent handwriting,eliminating the reliance on specific signatures or *** innovative method is intricately designed,encompassing five distinct phases:data collection,preprocessing,feature extraction,significant feature selection,and *** key advancement lies in the creation of a novel dataset specifically tailored for Bengali handwriting(BHW),setting the foundation for our comprehensive ***-preprocessing,we embarked on an exhaustive feature extraction process,encompassing integration with kinematic,statistical,spatial,and composite *** meticulous amalgamation resulted in a robust set of 91 *** enhance the efficiency of our system,we employed an analysis of variance(ANOVA)F test and mutual information scores approach,meticulously selecting the most pertinent *** the identification phase,we harnessed the power of cutting-edge deep learning models,notably the Convolutional Neural Network(CNN)and Bidirectional Long Short-Term Memory(BiLSTM).These models underwent rigorous training and testing to accurately discern individuals based on their handwriting ***,our methodology introduces a groundbreaking hybrid model that synergizes CNN and BiLSTM,capitalizing on fine motor features for enhanced individual ***,our experimental results unde
Skin cancer presents in various forms, including squamous cell carcinoma (SCC), basal cell carcinoma (BCC), and melanoma. Established risk factors include ultraviolet (UV) radiation exposure from solar or artificial s...
详细信息
Wireless Sensor Networks (WSNs) play an important role in the modern era and security has become an important research area. Intrusion Detection System (IDS) improve network security by monitoring the network state so...
详细信息
This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic *** in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from ...
详细信息
This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic *** in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from manta rays’unique foraging behaviors—specifically cyclone,chain,and somersault *** biologically inspired strategies allow for effective solutions to intricate physical *** its potent exploitation and exploration capabilities,MRFO has emerged as a promising solution for complex optimization *** utility and benefits have found traction in numerous academic *** its inception in 2020,a plethora of MRFO-based research has been featured in esteemed international journals such as IEEE,Wiley,Elsevier,Springer,MDPI,Hindawi,and Taylor&Francis,as well as at international conference *** paper consolidates the available literature on MRFO applications,covering various adaptations like hybridized,improved,and other MRFO variants,alongside optimization *** trends indicate that 12%,31%,8%,and 49%of MRFO studies are distributed across these four categories respectively.
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common *** ofmedical images is very important to secure patient *** these images consumes a lot of time onedge computing;theref...
详细信息
Healthcare systems nowadays depend on IoT sensors for sending data over the internet as a common *** ofmedical images is very important to secure patient *** these images consumes a lot of time onedge computing;therefore,theuse of anauto-encoder for compressionbefore encodingwill solve such a *** this paper,we use an auto-encoder to compress amedical image before encryption,and an encryption output(vector)is sent out over the *** the other hand,a decoder was used to reproduce the original image back after the vector was received and *** convolutional neural networks were conducted to evaluate our proposed approach:The first one is the auto-encoder,which is utilized to compress and encrypt the images,and the other assesses the classification accuracy of the image after decryption and *** hyperparameters of the encoder were tested,followed by the classification of the image to verify that no critical information was lost,to test the encryption and encoding *** this approach,sixteen hyperparameter permutations are utilized,but this research discusses three main cases in *** first case shows that the combination of Mean Square Logarithmic Error(MSLE),ADAgrad,two layers for the auto-encoder,and ReLU had the best auto-encoder results with a Mean Absolute Error(MAE)=0.221 after 50 epochs and 75%classification with the best result for the classification *** second case shows the reflection of auto-encoder results on the classification results which is a combination ofMean Square Error(MSE),RMSprop,three layers for the auto-encoder,and ReLU,which had the best classification accuracy of 65%,the auto-encoder gives MAE=0.31 after 50 *** third case is the worst,which is the combination of the hinge,RMSprop,three layers for the auto-encoder,and ReLU,providing accuracy of 20%and MAE=0.485.
Lung cancer is considered one of the most dangerous cancers, with a 5-year survival rate, ranking the disease among the top three deadliest cancers globally. Effectively combating lung cancer requires early detection ...
详细信息
Lung cancer is considered one of the most dangerous cancers, with a 5-year survival rate, ranking the disease among the top three deadliest cancers globally. Effectively combating lung cancer requires early detection for timely targeted interventions. However, ensuring early detection poses a major challenge, giving rise to innovative approaches. The emergence of artificial intelligence offers revolutionary solutions for predicting cancer. While marking a significant healthcare shift, the imperative to enhance artificial intelligence models remains a focus, particularly in precision medicine. This study introduces a hybrid deep learning model, incorporating Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory Networks (BiLSTM), designed for lung cancer detection from patients' medical notes. Comparative analysis with the MIMIC IV dataset reveals the model's superiority, achieving an MCC of 96.2% with an Accuracy of 98.1%, and outperforming LSTM and BioBERT with an MCC of 93.5 %, an accuracy of 97.0% and MCC of 95.5 with an accuracy of 98.0% respectively. Another comprehensive comparison was conducted with state-of-the-art results using the Yelp Review Polarity dataset. Remarkably, our model significantly outperforms the compared models, showcasing its superior performance and potential impact in the field. This research signifies a significant stride toward precise and early lung cancer detection, emphasizing the ongoing necessity for Artificial Intelligence model refinement in precision medicine. Authors
暂无评论