Artificial intelligence (AI) has expanded its influence across various sectors including education, healthcare, and agriculture. In the agricultural setting, the multiagent system (MAS) is recognized as a powerful too...
详细信息
The Disease Prediction System revolutionizes healthcare with advanced machine learning techniques for early detection of skin diseases, notably focusing on skin cancer. Through image processing and Transfer Learning, ...
详细信息
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study intro...
详细信息
The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance;however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. Through a performance analysis of the CEC2013 benchmark, the AIWGOA demonstrates notable advantages across various metrics. Subsequently, an evaluation index was employed to assess the enhanced handwritten documents and images, affirming the superior practical application of the AIWGOA compared with other algorithms.
This paper proposes a RISC-V extension, named SigWavy, meant to optimize the PWM control for general purpose or application specific designs. The RISC-V extension named above is a PWM control Unit with a dedicated ISA...
详细信息
Skin segmentation participates significantly in various biomedical applications,such as skin cancer identification and skin lesion *** paper presents a novel framework for segmenting the *** framework contains two mai...
详细信息
Skin segmentation participates significantly in various biomedical applications,such as skin cancer identification and skin lesion *** paper presents a novel framework for segmenting the *** framework contains two main stages:The first stage is for removing different types of noises from the dermoscopic images,such as hair,speckle,and impulse noise,and the second stage is for segmentation of the dermoscopic images using an attention residual U-shaped Network(U-Net).The framework uses variational Autoencoders(VAEs)for removing the hair noises,the Generative Adversarial Denoising Network(DGAN-Net),the Denoising U-shaped U-Net(D-U-NET),and Batch Renormalization U-Net(Br-U-NET)for remov-ing the speckle noise,and the Laplacian Vector Median Filter(MLVMF)for removing the impulse *** the second main stage,the residual attention u-net was used for *** framework achieves(35.11,31.26,27.01,and 26.16),(36.34,33.23,31.32,and 28.65),and(36.33,32.21,28.54,and 27.11)for removing hair,speckle,and impulse noise,respectively,based on Peak Signal Noise Ratio(PSNR)at the level of(0.1,0.25,0.5,and 0.75)of *** framework also achieves an accuracy of nearly 94.26 in the dice score in the process of segmentation before removing noise and 95.22 after removing different types of *** experiments have shown the efficiency of the used model in removing noise according to the structural similarity index measure(SSIM)and PSNR and in the segmentation process as well.
Deaf people or people facing hearing issues can communicate using sign language(SL),a visual *** works based on rich source language have been proposed;however,the work using poor resource language is still *** other ...
详细信息
Deaf people or people facing hearing issues can communicate using sign language(SL),a visual *** works based on rich source language have been proposed;however,the work using poor resource language is still *** other SLs,the visuals of the Urdu Language are *** study presents a novel approach to translating Urdu sign language(UrSL)using the UrSL-CNN model,a convolutional neural network(CNN)architecture specifically designed for this *** existingworks that primarily focus on languageswith rich resources,this study addresses the challenge of translating a sign language with limited *** conducted experiments using two datasets containing 1500 and 78,000 images,employing a methodology comprising four modules:data collection,pre-processing,categorization,and *** enhance prediction accuracy,each sign image was transformed into a greyscale image and underwent noise *** analysis with machine learning baseline methods(support vectormachine,GaussianNaive Bayes,randomforest,and k-nearest neighbors’algorithm)on the UrSL alphabets dataset demonstrated the superiority of UrSL-CNN,achieving an accuracy of ***,our model exhibited superior performance in Precision,Recall,and F1-score *** work not only contributes to advancing sign language translation but also holds promise for improving communication accessibility for individuals with hearing impairments.
Due to a tremendous increase in mobile traffic,mobile operators have started to restructure their networks to offload their *** directions will lead to fundamental changes in the design of future Fifthgeneration(5G)ce...
详细信息
Due to a tremendous increase in mobile traffic,mobile operators have started to restructure their networks to offload their *** directions will lead to fundamental changes in the design of future Fifthgeneration(5G)cellular *** the formal reason,the study solves the physical network of the mobile base station for the prediction of the best characteristics to develop an enhanced network with the help of graph *** number that can be uniquely calculated by a graph is known as a graph *** the last two decades,innumerable numerical graph invariants have been portrayed and used for correlation *** any case,no efficient assessment has been embraced to choose,how much these invariants are connected with a network *** paper will talk about two unique variations of the hexagonal graph with great capability of forecasting in the field of optimized mobile base station topology in setting with physical *** K-banhatti sombor invariants(KBSO)and Contrharmonic-quadratic invariants(CQIs)are newly introduced and have various expectation characteristics for various variations of hexagonal graphs or *** the hexagonal networks are used in mobile base stations in layered,forms called *** review settled the topology of a hexagon of two distinct sorts with two invariants KBSO and CQIs and their reduced *** deduced outcomes can be utilized for the modeling of mobile cellular networks,multiprocessors interconnections,microchips,chemical compound synthesis and memory interconnection *** results find sharp upper bounds and lower bounds of the honeycomb network to utilize the Mobile base station network(MBSN)for the high load of traffic and minimal traffic also.
Big data has the ability to open up innovative and ground-breaking prospects for the electrical grid,which also supports to obtain a variety of technological,social,and financial *** is an unprecedented amount of hete...
详细信息
Big data has the ability to open up innovative and ground-breaking prospects for the electrical grid,which also supports to obtain a variety of technological,social,and financial *** is an unprecedented amount of heterogeneous big data as a consequence of the growth of power grid technologies,along with data processing and advanced *** main obstacles in turning the heterogeneous large dataset into useful results are computational burden and information *** original contribution of this paper is to develop a new big data framework for detecting various intrusions from the smart grid systems with the use of AI ***,an AdaBelief Exponential Feature Selection(AEFS)technique is used to efficiently handle the input huge datasets from the smart grid for boosting ***,a Kernel based Extreme Neural Network(KENN)technique is used to anticipate security vulnerabilities more *** Polar Bear Optimization(PBO)algorithm is used to efficiently determine the parameters for the estimate of radial basis ***,several types of smart grid network datasets are employed during analysis in order to examine the outcomes and efficiency of the proposed AdaBelief Exponential Feature Selection-Kernel based Extreme Neural Network(AEFS-KENN)big data security *** results reveal that the accuracy of proposed AEFS-KENN is increased up to 99.5%with precision and AUC of 99%for all smart grid big datasets used in this study.
Touch gesture biometrics authentication system is the study of user's touching behavior on his touch device to identify *** features traditionally used in touch gesture authentication systems are extracted using h...
详细信息
Touch gesture biometrics authentication system is the study of user's touching behavior on his touch device to identify *** features traditionally used in touch gesture authentication systems are extracted using hand-crafted feature extraction *** this work,we investigate the ability of Deep Learning(DL)to automatically discover useful features of touch gesture and use them to authenticate the *** different models are investigated Long-Short Term Memory(LSTM),Gated Recurrent Unit(GRU),Convolutional Neural Network(CNN)combined with LSTM(CNN-LSTM),and CNN combined with GRU(CNN-GRU).In addition,different regularization techniques are investigated such as Activity Regularizer,Batch Normalization(BN),Dropout,and *** deep networks were trained from scratch and tested using TouchAlytics and BioIdent datasets for dynamic touch *** result reported in terms of authentication accuracy,False Acceptance Rate(FAR),False Rejection Rate(FRR).The best result we have been obtained was 96.73%,96.07%and 96.08%for training,validation and testing accuracy respectively with dynamic touch authentication system on TouchAlytics dataset with CNN-GRU DL model,while the best result of FAR and FRR obtained on TouchAlytics dataset was with CNN-LSTM were FAR was 0.0009 and FRR was *** BioIdent dataset the best results have been obtained was 84.87%,78.28%and 78.35%for Training,validation and testing accuracy respectively with CNN-LSTM *** use of a learning based approach in touch authentication system has shown good results comparing with other state-of-the-art using TouchAlytics dataset.
With the rapid development of Large Language Model (LLM) technology, it has become an indispensable force in biomedical data analysis research. However, biomedical researchers currently have limited knowledge about LL...
详细信息
暂无评论