This book introduces an optimal iterative learning control (ILC) design framework from the end user's point of view. Its central theme is the understanding of model dynamics, the construction of a procedure for sy...
详细信息
ISBN:
(数字)9783031802362
ISBN:
(纸本)9783031802355;9783031802386
This book introduces an optimal iterative learning control (ILC) design framework from the end user's point of view. Its central theme is the understanding of model dynamics, the construction of a procedure for systematic input updating and their contribution to successful algorithm design. The authors discuss the many applications of ILC in industrial systems, applications such as robotics and mechanical testing.
The text covers a number of optimal ILC design methods, including gradient-based and norm-optimal ILC. Their convergence properties are described and detailed design guidelines, including performance-improvement mechanisms, are presented. Readers are given a clear picture of the nature of ILC and the benefits of the optimization-based approach from the conceptual and mathematical foundations of the problem of algorithm construction to the impact of available parameters in making acceleration of algorithmic convergence possible. Three case studies on robotic platforms, an electro-mechanical machine, and robot-assisted stroke rehabilitation are included to demonstrate the application of these methods in the real-world.
With its emphasis on basic concepts, detailed design guidelines and examples of benefits,
Optimal Iterative Learning control
will be of value to practising engineers and academic researchers alike.
Spectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, sonar, and underwater acoustics. Most existing spectral...
详细信息
ISBN:
(数字)9783031025259
ISBN:
(纸本)9783031013973
Spectral estimation is important in many fields including astronomy, meteorology, seismology, communications, economics, speech analysis, medical imaging, radar, sonar, and underwater acoustics. Most existing spectral estimation algorithms are devised for uniformly sampled complete-data sequences. However, the spectral estimation for data sequences with missing samples is also important in many applications ranging from astronomical time series analysis to synthetic aperture radar imaging with angular diversity. For spectral estimation in the missing-data case, the challenge is how to extend the existing spectral estimation techniques to deal with these missing-data samples. Recently, nonparametric adaptive filtering based techniques have been developed successfully for various missing-data problems. Collectively, these algorithms provide a comprehensive toolset for the missing-data problem based exclusively on the nonparametric adaptive filter-bank approaches, which are robust and accurate, and can provide high resolution and low sidelobes. In this book, we present these algorithms for both one-dimensional and two-dimensional spectral estimation problems.
The series Advances in Industrial control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New ...
详细信息
ISBN:
(数字)9781846283345
ISBN:
(纸本)9781852339821;9781849969895
The series Advances in Industrial control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. In some areas of manufacturing, the elements of a flexible manufacturing system form the key components of the process line. These key components are four-fold: a set of programmable robots and machines, an automated materia- handling system that allows parts to be freely routed and re-routed, a buffer storage system where parts and partly-assembled components can wait until required for further processing and assembly and finally, a supervisory control system. The technology employed to coordinate and control all these components as a working system is usually based on programmable logic controllers. The use of this automation hardware and software in manufacturing is designed to yield significant cost reductions and to enhance quality.
The two volume set LNCS 5263/5264 constitutes the refereed proceedings of the 5th International Symposium on Neural Networks, ISNN 2008, held in Beijing, China in September 2008. The 192 revised papers presented were ...
详细信息
ISBN:
(数字)9783540877349
ISBN:
(纸本)9783540877332
The two volume set LNCS 5263/5264 constitutes the refereed proceedings of the 5th International Symposium on Neural Networks, ISNN 2008, held in Beijing, China in September 2008. The 192 revised papers presented were carefully reviewed and selected from a total of 522 submissions. The papers are organized in topical sections on computational neuroscience; cognitive science; mathematical modeling of neural systems; stability and nonlinear analysis; feedforward and fuzzy neural networks; probabilistic methods; supervised learning; unsupervised learning; support vector machine and kernel methods; hybrid optimisation algorithms; machine learning and data mining; intelligent control and robotics; pattern recognition; audio image processinc and computer vision; fault diagnosis; applications and implementations; applications of neural networks in electronic engineering; cellular neural networks and advanced control with neural networks; nature inspired methods of high-dimensional discrete data analysis; pattern recognition and information processing using neural networks.
contains contributions from world-leading experts from both the academic and industrial communities. The first part of the volume consists of invited papers by international authors describing possibilistic logic i...
详细信息
ISBN:
(数字)9781461552611
ISBN:
(纸本)9780792386506;9781461373995
contains contributions from world-leading experts from both the academic and industrial communities. The first part of the volume consists of invited papers by international authors describing possibilistic logic in decision analysis, fuzzy dynamic programming in optimization, linguistic modifiers for word computation, and theoretical treatments and applications of fuzzy reasoning. The second part is composed of eleven contributions from Chinese authors focusing on some of the key issues in the fields: stable adaptive fuzzy controlsystems, partial evaluations and fuzzy reasoning, fuzzy wavelet neural networks, analysis and applications of genetic algorithms, partial repeatability, rough set reduction for data enriching, limits of agents in process calculus, medium logic and its evolution, and factor spaces canes.;These contributions are not only theoretically sound and well-formulated, but are also coupled with applicability implications and/or implementation treatments. The domains of applications realized or implied are: decision analysis, word computation, databases and knowledge discovery, power systems, controlsystems, and multi-destinational routing. Furthermore, the articles contain materials that are an outgrowth of recently conducted research, addressing fundamental and important issues of fuzzy logic and soft computing.
Smart grids have become an emerging topic due to net-zero emissions and the rapid development of artificial intelligence (AI) technology focused on achieving targeted energy distribution and maintaining operating rese...
详细信息
Smart grids have become an emerging topic due to net-zero emissions and the rapid development of artificial intelligence (AI) technology focused on achieving targeted energy distribution and maintaining operating reserves. In order to prevent cyber-physical attacks, issues related to the security and privacy of grid systems are receiving much attention from researchers. In this paper, privacy-aware energy grid management systems with anomaly detection networks and distributed learning mechanisms are proposed. The anomaly detection network consists of a server and a client learning network, which collaboratively learn patterns without sharing data, and periodically train and exchange knowledge. We also develop learning mechanisms with federated, distributed, and split learning to improve privacy and use Q-learning for decision-making to facilitate interpretability. To demonstrate the effectiveness and robustness of the proposed schemes, extensive simulations are conducted in different energy grid environments with different target distributions, ORRs, and attack scenarios. The experimental results show that the proposed schemes not only improve management performance but also enhance privacy and security levels. We also compare the management performance and privacy level of the different learning machines and provide usage recommendations.
暂无评论