咨询与建议

限定检索结果

文献类型

  • 27 篇 会议
  • 15 篇 期刊文献

馆藏范围

  • 42 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 20 篇 工学
    • 18 篇 控制科学与工程
    • 10 篇 电气工程
    • 10 篇 电子科学与技术(可...
    • 7 篇 信息与通信工程
    • 7 篇 计算机科学与技术...
    • 6 篇 软件工程
  • 18 篇 理学
    • 17 篇 数学
    • 13 篇 统计学(可授理学、...
    • 12 篇 系统科学
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 20 篇 state estimation
  • 14 篇 stochastic syste...
  • 5 篇 kalman filters
  • 5 篇 estimation theor...
  • 5 篇 covariance matri...
  • 4 篇 kalman filtering
  • 4 篇 approximation me...
  • 4 篇 nonlinear system...
  • 4 篇 nonlinear filter...
  • 3 篇 monte carlo meth...
  • 3 篇 nonlinear filter...
  • 2 篇 sample size
  • 2 篇 filtering
  • 2 篇 target tracking
  • 2 篇 software framewo...
  • 2 篇 particle measure...
  • 2 篇 noise
  • 2 篇 dual control
  • 2 篇 nonlinear state ...
  • 2 篇 monte carlo meth...

机构

  • 4 篇 department of cy...
  • 4 篇 department of cy...
  • 4 篇 research centre ...
  • 3 篇 department of cy...
  • 3 篇 research centre ...
  • 2 篇 department of cy...
  • 2 篇 department of cy...
  • 2 篇 department of cy...
  • 1 篇 cybernetics rese...
  • 1 篇 department of cy...
  • 1 篇 department of cy...
  • 1 篇 research centre ...
  • 1 篇 department of cy...
  • 1 篇 department of cy...
  • 1 篇 research centre ...
  • 1 篇 department of cy...
  • 1 篇 department of cy...
  • 1 篇 research centre ...
  • 1 篇 department of cy...
  • 1 篇 department of cy...

作者

  • 18 篇 šimandl miroslav
  • 14 篇 miroslav šimandl
  • 13 篇 ondřej straka
  • 10 篇 jindřich duník
  • 9 篇 straka ondřej
  • 7 篇 flídr miroslav
  • 7 篇 duník jindřich
  • 5 篇 miroslav flídr
  • 5 篇 miroslav ŝimandl
  • 3 篇 straka ondšej
  • 3 篇 ondrej straka
  • 2 篇 duník jindšich
  • 2 篇 jindrich duník
  • 2 篇 jaroslav ŝvácha
  • 2 篇 miroslav simandl
  • 2 篇 jindrich dunik
  • 2 篇 švácha jaroslav
  • 1 篇 jiří ajgl
  • 1 篇 simandl miroslav
  • 1 篇 miroslav s̆imand...

语言

  • 42 篇 英文
检索条件"机构=Department of Cybernetics and Research Centre Data - Algorithms - Decision Making"
42 条 记 录,以下是1-10 订阅
排序:
Truncated unscented particle filter
Truncated unscented particle filter
收藏 引用
作者: Straka, Ondřej Duník, Jindřich Šimandl, Miroslav Research Centre Data-Algorithms-Decision Making Department of Cybernetics University of West Bohemia Pilsen Czech Republic
The problem of state estimation of nonlinear stochastic dynamic systems with nonlinear inequality constraints is treated. The paper focuses on a particle filtering approach, which provides an estimate of the state in ... 详细信息
来源: 评论
Particle based probability density fusion with differential Shannon entropy criterion
Particle based probability density fusion with differential ...
收藏 引用
作者: Ajgl, Jiří Šimandl, Miroslav Department of Cybernetics and Research Centre Data - Algorithms - Decision Making Faculty of Applied Sciences University of West Bohemia Pilsen Czech Republic
This paper focuses on a decentralised nonlinear estimation problem in a multiple sensor network. The stress is laid on the optimal fusion of probability densities conditioned by different data. The probability density... 详细信息
来源: 评论
An efficient constrained Gaussian particle filter
An efficient constrained Gaussian particle filter
收藏 引用
作者: Straka, Ondřej Šimandl, Miroslav Department of Cybernetics and Research Centre Data-Algorithms-Decision Making Faculty of Applied Sciences University of West Bohemia Univerzitní 8 306 14 Pilsen Czech Republic
The paper deals with a state estimation of nonlinear stochastic dynamic systems subject to a nonlinear inequality constraint. A special focus is paid to particle filters, which provide an estimate of the whole probabi... 详细信息
来源: 评论
The development of a randomised unscented Kalman filter
The development of a randomised unscented Kalman filter
收藏 引用
作者: Duník, Jindřich Straka, Ondřej Šimandl, Miroslav Department of Cybernetics and Research Centre Data-Algorithms-Decision Making Faculty of Applied Sciences University of West Bohemia Univerzitní 8 306 14 Pilsen Czech Republic
The paper deals with state estimation of nonlinear stochastic dynamic systems. Traditional filters providing local estimates of the states, such as the extended Kalman filter, unscented Kalman filter or the cubature K... 详细信息
来源: 评论
Performance evaluation of local state estimation methods in bearings-only tracking problems
Performance evaluation of local state estimation methods in ...
收藏 引用
作者: Straka, Ondřej Duník, Jindřich Simandl, Miroslav Department of Cybernetics Research Centre Data-Algorithms-Decision Making Faculty of Applied Sciences Univerzitní 8 306 14 Pilsen Czech Republic
The paper deals with a performance analysis of several local filters within three bearing-only tracking scenarios. Performance of the extended Kalman filter, unscented Kalman filter, unscented Kalman filter with adapt... 详细信息
来源: 评论
Gaussian sum unscented Kalman filter with adaptive scaling parameters
Gaussian sum unscented Kalman filter with adaptive scaling p...
收藏 引用
作者: Straka, Ondřej Duník, Jindřich Šimandl, Miroslav Department of Cybernetics Faculty of Applied Sciences Research Centre Data-Algorithms-Decision Making Univerzitní 8 306 14 Pilsen Czech Republic
The paper deals with state estimation of nonlinear non-Gaussian discrete dynamic systems by a bank of unscented Kalman filters. The stress is laid on an adaptive choice of a scaling parameter of the unscented Kalman f... 详细信息
来源: 评论
Dual adaptive controllers based on partial certainty equivalence
Dual adaptive controllers based on partial certainty equival...
收藏 引用
作者: Flídr, Miroslav Šimandl, Miroslav Research Centre Data - Algorithms - Decision Making University of West Bohemia Univerzitní 8 30614 Plzeň Czech Republic Department of Cybernetics Faculty of Applied Sciences University of West Bohemia Univerzitní 8 30614 Plzeň Czech Republic
The article deals with the optimal control of a linear discrete stochastic state space system with uncertain parameters. The solution of this optimization problem leads to design of controllers with dual features. Bec... 详细信息
来源: 评论
The Development of a Randomised Unscented Kalman Filter
收藏 引用
IFAC Proceedings Volumes 2011年 第1期44卷 8-13页
作者: Jindřich Duník Ondřej Straka Miroslav Šimandl Department of Cybernetics & Research Centre Data-Algorithms-Decision Making Faculty of Applied Sciences University of West Bohemia Univerzitní 8 306 14 Pilsen Czech Republic
Abstract The paper deals with state estimation of nonlinear stochastic dynamic systems. Traditional filters providing local estimates of the states, such as the extended Kalman filter, unscented Kalman filter or the c... 详细信息
来源: 评论
An Efficient Constrained Gaussian Particle Filter
收藏 引用
IFAC Proceedings Volumes 2011年 第1期44卷 11973-11978页
作者: Ondřej Straka Miroslav Šimandl Department of Cybernetics & Research Centre Data-Algorithms-Decision Making Faculty of Applied Sciences University of West Bohemia Univerzitní 8 306 14 Pilsen Czech Republic
Abstract The paper deals with a state estimation of nonlinear stochastic dynamic systems subject to a nonlinear inequality constraint. A special focus is paid to particle filters, which provide an estimate of the whol... 详细信息
来源: 评论
Gaussian sum unscented Kalman filter with adaptive scaling parameters
Gaussian sum unscented Kalman filter with adaptive scaling p...
收藏 引用
International Conference on Information Fusion
作者: Ondřej Straka Jindřich Duník Miroslav Šimandl Research Centre Data-Algorithms-Decision Making Department of Cybernetics Faculty of Applied Sciences University of West Bohemia Pilsen Czech Republic
The paper deals with state estimation of nonlinear non-Gaussian discrete dynamic systems by a bank of unscented Kalman filters. The stress is laid on an adaptive choice of a scaling parameter of the unscented Kalman f... 详细信息
来源: 评论