咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 71 篇 会议

馆藏范围

  • 160 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 97 篇 工学
    • 59 篇 计算机科学与技术...
    • 54 篇 软件工程
    • 19 篇 控制科学与工程
    • 17 篇 信息与通信工程
    • 13 篇 光学工程
    • 13 篇 生物工程
    • 8 篇 化学工程与技术
    • 7 篇 电气工程
    • 7 篇 生物医学工程(可授...
    • 6 篇 电子科学与技术(可...
    • 5 篇 力学(可授工学、理...
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
    • 4 篇 农业工程
  • 94 篇 理学
    • 55 篇 数学
    • 39 篇 统计学(可授理学、...
    • 33 篇 物理学
    • 19 篇 地球物理学
    • 14 篇 生物学
    • 9 篇 系统科学
    • 6 篇 化学
  • 34 篇 管理学
    • 18 篇 管理科学与工程(可...
    • 18 篇 图书情报与档案管...
    • 8 篇 工商管理
  • 13 篇 医学
    • 12 篇 临床医学
    • 8 篇 基础医学(可授医学...
    • 5 篇 公共卫生与预防医...
  • 9 篇 法学
    • 9 篇 社会学
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 6 篇 农学
    • 4 篇 作物学
  • 1 篇 教育学

主题

  • 8 篇 galaxies
  • 6 篇 machine learning
  • 5 篇 cosmology
  • 5 篇 forecasting
  • 4 篇 surveys
  • 4 篇 deep learning
  • 4 篇 neural networks
  • 3 篇 probability dist...
  • 3 篇 gaussian distrib...
  • 3 篇 computer vision
  • 3 篇 training
  • 2 篇 semantic segment...
  • 2 篇 generative adver...
  • 2 篇 image segmentati...
  • 2 篇 cattle
  • 2 篇 iterative method...
  • 2 篇 risk management
  • 2 篇 time series
  • 2 篇 embeddings
  • 2 篇 stochastic syste...

机构

  • 19 篇 department of da...
  • 18 篇 financial univer...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 11 篇 center for compu...
  • 10 篇 department of st...
  • 10 篇 ciela - montreal...
  • 8 篇 department of hi...
  • 7 篇 department of ph...
  • 7 篇 mila - quebec ar...
  • 6 篇 department of da...
  • 6 篇 department of ph...
  • 6 篇 v.a. trapeznikov...
  • 5 篇 lab crestview ra...
  • 5 篇 department of da...
  • 5 篇 national enginee...
  • 5 篇 center for machi...
  • 5 篇 university of pe...
  • 5 篇 helmholtz ai hel...
  • 5 篇 department of ne...

作者

  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 12 篇 andriyanov nikit...
  • 9 篇 hezaveh yashar
  • 8 篇 perreault-levass...
  • 7 篇 hüllermeier eyke
  • 7 篇 waegeman willem
  • 6 篇 li hongwei bran
  • 6 篇 legin ronan
  • 5 篇 bakas spyridon
  • 5 篇 wang chunhao
  • 5 篇 kazerooni anahit...
  • 5 篇 chung verena
  • 5 篇 linguraru marius...
  • 5 篇 kofler florian
  • 5 篇 moawad ahmed w.
  • 5 篇 calabrese evan
  • 5 篇 anazodo udunna

语言

  • 151 篇 英文
  • 9 篇 其他
检索条件"机构=Department of Data Analysis and Machine Learning"
160 条 记 录,以下是81-90 订阅
排序:
Restricted Boltzmann machine and Deep Belief Network: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on Boltzmann machine (BM), Restricted Boltzmann machine (RBM), and Deep Belief Network (DBN). We start with the required background on probabilistic graphical models, Markov random ... 详细信息
来源: 评论
Johnson-lindenstrauss lemma, linear and nonlinear random projections, random fourier features, and random kitchen sinks: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on the Johnson-Lindenstrauss (JL) lemma and linear and nonlinear random projections. We start with linear random projection and then justify its correctness by JL lemma and its proo... 详细信息
来源: 评论
Generative Adversarial Networks and adversarial autoencoders: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on Generative Adversarial Network (GAN), adversarial autoencoders, and their variants. We start with explaining adversarial learning and the vanilla GAN. Then, we explain the condit... 详细信息
来源: 评论
Factor analysis, Probabilistic Principal Component analysis, Variational Inference, and Variational Autoencoder: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on factor analysis, probabilistic Principal Component analysis (PCA), variational inference, and Variational Autoencoder (VAE). These methods, which are tightly related, are dimensi... 详细信息
来源: 评论
Predicting gastric cancer response to anti-HER2 therapy or anti-HER2 combined immunotherapy based on multimodal data
收藏 引用
Signal Transduction and Targeted Therapy 2024年 第9期9卷 4137-4148页
作者: Zifan Chen Yang Chen Yu Sun Lei Tang Li Zhang Yajie Hu Meng He Zhiwei Li Siyuan Cheng Jiajia Yuan Zhenghang Wang Yakun Wang Jie Zhao Jifang Gong Liying Zhao Baoshan Cao Guoxin Li Xiaotian Zhang Bin Dong Lin Shen Center for Data Science Peking UniversityBeijingChina Department of Gastrointestinal Oncology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina Department of Pathology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina Department of Radiology Key Laboratory of Carcinogenesis and Translational Research(Ministry of Education)Peking University Cancer Hospital and InstituteBeijingChina National Biomedical Imaging Center Peking UniversityBeijingChina Department of General Surgery Nanfang HospitalSouthern Medical UniversityGuangzhouChina Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor GuangzhouChina Department of Medical Oncology and Radiation Sickness Peking University Third HospitalBeijingChina National Engineering Laboratory for Big Data Analysis and Applications Peking UniversityBeijingChina Beijing International Center for Mathematical Research(BICMR) Peking UniversityBeijingChina Center for Machine Learning Research Peking UniversityBeijingChina
The sole use of single modality data often fails to capture the complex heterogeneity among patients,including the variability in resistance to anti-HER2 therapy and outcomes of combined treatment regimens,for the tre... 详细信息
来源: 评论
Locally linear embedding and its variants: Tutorial and survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper for Locally Linear Embedding (LLE) and its variants. The idea of LLE is fitting the local structure of manifold in the embedding space. In this paper, we first cover LLE, kernel LLE... 详细信息
来源: 评论
Multidimensional scaling, Sammon mapping, and Isomap: Tutorial and survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
Multidimensional Scaling (MDS) is one of the first fundamental manifold learning methods. It can be categorized into several methods, i.e., classical MDS, kernel classical MDS, metric MDS, and non-metric MDS. Sammon m... 详细信息
来源: 评论
Spectral, Probabilistic, and Deep Metric learning: Tutorial and Survey
arXiv
收藏 引用
arXiv 2022年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on metric learning. Algorithms are divided into spectral, probabilistic, and deep metric learning. We first start with the definition of distance metric, Mahalanobis distance, and g... 详细信息
来源: 评论
Robust learning with implicit residual networks
arXiv
收藏 引用
arXiv 2019年
作者: Reshniak, Viktor Webster, Clayton G. Data Analysis and Machine Learning Oak Ridge National Laboratory Oak RidgeTN37831 United States Department of Mathematics University of Tennessee at Knoxville KnoxvilleTN37996 United States Lirio LLC KnoxvilleTN37923 United States
In this effort, we propose a new deep architecture utilizing residual blocks inspired by implicit discretization schemes. As opposed to the standard feed-forward networks, the outputs of the proposed implicit residual... 详细信息
来源: 评论
Developing a Strategy for the Digital Transformation of an Educational Organization Based on Cloud Technology
Developing a Strategy for the Digital Transformation of an E...
收藏 引用
Information Systems Theory and Practice (ISTP), Seminar on
作者: Alexander V. Olifirov Krystina A. Makoveichuk Sergei A. Petrenko Department of Economics and Finance V.I Vernadsky Crimean Federal University Yalta Russia Department of Data Analysis and Machine Learning Financial University under the Government of the Russian Federation Moscow Russia Department of Information Security Saint Petersburg Electrotechnical University “LETI” Saint Petersburg Russia
The article examines the theory and practical implementation of a digital transformation strategy. It was found that the main stages of formation of the digital transformation strategy of the organization are determin...
来源: 评论