咨询与建议

限定检索结果

文献类型

  • 25 篇 期刊文献
  • 9 篇 会议

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 理学
    • 10 篇 数学
    • 7 篇 统计学(可授理学、...
    • 6 篇 物理学
    • 2 篇 生物学
    • 1 篇 化学
    • 1 篇 系统科学
  • 15 篇 工学
    • 10 篇 计算机科学与技术...
    • 8 篇 软件工程
    • 3 篇 信息与通信工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 水利工程
    • 1 篇 化学工程与技术
    • 1 篇 轻工技术与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 4 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
    • 1 篇 工商管理
  • 2 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 农学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 3 篇 probability dist...
  • 3 篇 statistical infe...
  • 2 篇 epilepsy
  • 2 篇 contrastive lear...
  • 2 篇 inventory contro...
  • 2 篇 parameter estima...
  • 2 篇 prediction metho...
  • 1 篇 fuzzy logic
  • 1 篇 cell migration
  • 1 篇 dynamical system...
  • 1 篇 biological compl...
  • 1 篇 classification e...
  • 1 篇 sensitivity anal...
  • 1 篇 wind speed
  • 1 篇 error correction
  • 1 篇 statistics
  • 1 篇 temperature dist...
  • 1 篇 joule heating
  • 1 篇 electroencephalo...
  • 1 篇 self-supervised ...

机构

  • 8 篇 department of da...
  • 3 篇 munich center fo...
  • 3 篇 robotic laborato...
  • 2 篇 jiangsu internat...
  • 2 篇 department of ma...
  • 2 篇 department of ma...
  • 2 篇 institute for co...
  • 2 篇 neustrelitz
  • 2 篇 school of mathem...
  • 2 篇 freiburg center ...
  • 2 篇 yunnan key labor...
  • 1 篇 school of cognit...
  • 1 篇 department of ps...
  • 1 篇 neural basis of ...
  • 1 篇 school of mathem...
  • 1 篇 informatics univ...
  • 1 篇 department of ma...
  • 1 篇 center for data ...
  • 1 篇 sorbonne univers...
  • 1 篇 sapienza univers...

作者

  • 6 篇 hüllermeier eyke
  • 6 篇 bengs viktor
  • 6 篇 waegeman willem
  • 4 篇 jens timmer
  • 4 篇 björn schelter
  • 3 篇 jürgens mira
  • 2 篇 malenka mader
  • 2 篇 anatoly pashkevi...
  • 2 篇 xie jinhan
  • 2 篇 eyke hüllermeier
  • 2 篇 alexandre dolgui
  • 2 篇 jiang bei
  • 2 篇 shafiq anum
  • 2 篇 viktor bengs
  • 2 篇 willem waegeman
  • 2 篇 meinert nis
  • 2 篇 kong linglong
  • 2 篇 nataliia kussul
  • 2 篇 wolfgang mader
  • 2 篇 maxim pashkevich

语言

  • 30 篇 英文
  • 4 篇 其他
检索条件"机构=Department of Data Analysis and Mathematical Modeling"
34 条 记 录,以下是1-10 订阅
排序:
A CALIBRATION TEST FOR EVALUATING SET-BASED EPISTEMIC UNCERTAINTY REPRESENTATIONS
arXiv
收藏 引用
arXiv 2025年
作者: Jürgens, Mira Mortier, Thomas Hüllermeier, Eyke Bengs, Viktor Waegeman, Willem Department of Data Analysis and Mathematical Modeling Ghent University Belgium Department of Environment Ghent University Belgium Department of Informatics Munich Center for Machine Learning LMU Munich Germany
The accurate representation of epistemic uncertainty is a challenging yet essential task in machine learning. A widely used representation corresponds to convex sets of probabilistic predictors, also known as credal s... 详细信息
来源: 评论
Statistical inference for smoothed quantile regression with streaming data
收藏 引用
Journal of Econometrics 2025年 249卷
作者: Xie, Jinhan Yan, Xiaodong Jiang, Bei Kong, Linglong Yunnan Key Laboratory of Statistical Modeling and Data Analysis Yunnan University Kunming650091 China Department of Mathematical and Statistical Sciences University of Alberta Edmonton AlbertaT6G 2G1 Canada School of Mathematics and Statistics Xi'an Jiaotong University China
In this paper, we tackle the problem of conducting valid statistical inference for quantile regression with streaming data. The main difficulties are that the quantile regression loss function is non-smooth and it is ... 详细信息
来源: 评论
Online federated learning framework for classification
arXiv
收藏 引用
arXiv 2025年
作者: Guo, Wenxing Xie, Jinhan Lu, Jianya Jiang, Bei Dai, Hongsheng Kong, Linglong School of Mathematics Statistics and Actuarial Science University of Essex ColchesterCO4 3SQ United Kingdom Yunnan Key Laboratory of Statistical Modeling and Data Analysis Yunnan University Kunming650091 China Department of Mathematical and Statistical Sciences University of Alberta EdmontonABT6G 2G1 Canada School of Mathematics Statistics and Physics Newcastle University Newcastle upon TyneNE1 7RU United Kingdom
In this paper, we develop a novel online federated learning framework for classification, designed to handle streaming data from multiple clients while ensuring data privacy and computational efficiency. Our method le... 详细信息
来源: 评论
Investigating the sensitivity of nanofluid flow around a cylindrical disk: A study of Walter's B nanofluid using response surface methodology and artificial neural networks
Journal of Engineering Research (Kuwait)
收藏 引用
Journal of Engineering Research (Kuwait) 2025年
作者: Shafiq, Anum Çolak, Andaç Batur Sindhu, Tabassum Naz Abushal, Tahani A. School of Mathematics and Statistics Nanjing University of Information Science and Technology Nanjing 210044 China Jiangsu International Joint Laboratory on System Modeling and Data Analysis Nanjing University of Information Science and Technology Nanjing 210044 China Department of Information Systems and Technologies Niğde Ömer Halisdemir University Niğde 51240 United States Department of Statistics Quaid-I-Azam University Islamabad 44000 Pakistan Department of Mathematical Sciences Umm Al-Qura University Makkah 24382 Saudi Arabia
Modern technology development heavily relies on nanotechnology, which has gained significant attention from researchers in recent years, particularly in finding ways to enhance heat transfer rates. One approach to add... 详细信息
来源: 评论
Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?  41
Is Epistemic Uncertainty Faithfully Represented by Evidentia...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Jürgens, Mira Meinert, Nis Bengs, Viktor Hüllermeier, Eyke Waegeman, Willem Department of Data Analysis and Mathematical Modeling Ghent University Belgium Neustrelitz Germany Germany
Trustworthy ML systems should not only return accurate predictions, but also a reliable representation of their uncertainty. Bayesian methods are commonly used to quantify both aleatoric and epistemic uncertainty, but... 详细信息
来源: 评论
Pitfalls of Epistemic Uncertainty Quantification through Loss Minimisation  36
Pitfalls of Epistemic Uncertainty Quantification through Los...
收藏 引用
36th Conference on Neural Information Processing Systems, NeurIPS 2022
作者: Bengs, Viktor Hüllermeier, Eyke Waegeman, Willem Germany Munich Center for Machine Learning Germany Department of Data Analysis and Mathematical Modeling Ghent University Belgium
Uncertainty quantification has received increasing attention in machine learning in the recent past. In particular, a distinction between aleatoric and epistemic uncertainty has been found useful in this regard. The l... 详细信息
来源: 评论
Machine Learning Models and Technology for Classification of Forest on Satellite data  20
Machine Learning Models and Technology for Classification of...
收藏 引用
20th International Conference on Smart Technologies, EUROCON 2023
作者: Salii, Yevhenii Kuzin, Volodymyr Hohol, Anton Kussul, Nataliia Yailymova, Hanna National Technical University of Ukraine 'Igor Sikorsky Kyiv Polytechnic Institute' Department of Mathematical Modeling and Data Analysis Kyiv Ukraine National University of 'Kyiv-Mohyla Academy' Department of Informatics Kyiv Ukraine National Technical University of Ukraine 'Igor Sikorsky Kyiv Polytechnic Institute' Department of Space Information Technologies and Systems Space Research Institute NASU-SSAU Department of Mathematical Modeling and Data Analysis Kyiv Ukraine
The paper deals with the problem of semantic segmentation of satellite imagery to deliver forest type map with high resolution. To solve the problem, we propose 4 machine learning models. Two of them are based on Rand... 详细信息
来源: 评论
Is Epistemic Uncertainty Faithfully Represented by Evidential Deep Learning Methods?
arXiv
收藏 引用
arXiv 2024年
作者: Jürgens, Mira Meinert, Nis Bengs, Viktor Hüllermeier, Eyke Waegeman, Willem Department of Data Analysis and Mathematical Modeling Ghent University Belgium Neustrelitz Germany Germany
Trustworthy ML systems should not only return accurate predictions, but also a reliable representation of their uncertainty. Bayesian methods are commonly used to quantify both aleatoric and epistemic uncertainty, but... 详细信息
来源: 评论
Geospatial analysis of Leased Lands in Ukraine
Geospatial Analysis of Leased Lands in Ukraine
收藏 引用
2021 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics, UkrMiCo 2021
作者: Shelestov, Andrii Yailymov, Bohdan Parkhomchuk, Oleksandr Department of Mathematical Modeling and Data Analysis National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute» Kyiv Ukraine Department of Space Information Systems and Services Space Research Institute NAS Ukraine SSA Ukraine Kyiv Ukraine
With the opening of the land market, the analysis of leased land in Ukraine becomes more and more important. On the base of remote sensing data we can use additional capabilities and tools to analyze and predict the s... 详细信息
来源: 评论
ON SECOND-ORDER SCORING RULES FOR EPISTEMIC UNCERTAINTY QUANTIFICATION
arXiv
收藏 引用
arXiv 2023年
作者: Bengs, Viktor Hüllermeier, Eyke Waegeman, Willem Munich Center for Machine Learning Germany Department of Data Analysis and Mathematical Modeling Ghent University Belgium
It is well known that accurate probabilistic predictors can be trained through empirical risk minimisation with proper scoring rules as loss functions. While such learners capture so-called aleatoric uncertainty of pr... 详细信息
来源: 评论