咨询与建议

限定检索结果

文献类型

  • 1,888 篇 会议
  • 1,608 篇 期刊文献
  • 11 册 图书

馆藏范围

  • 3,507 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,169 篇 工学
    • 1,666 篇 计算机科学与技术...
    • 1,430 篇 软件工程
    • 439 篇 信息与通信工程
    • 406 篇 生物工程
    • 350 篇 控制科学与工程
    • 303 篇 生物医学工程(可授...
    • 227 篇 光学工程
    • 212 篇 电气工程
    • 155 篇 电子科学与技术(可...
    • 107 篇 化学工程与技术
    • 103 篇 安全科学与工程
    • 100 篇 机械工程
    • 93 篇 网络空间安全
    • 89 篇 仪器科学与技术
    • 61 篇 动力工程及工程热...
  • 1,443 篇 理学
    • 810 篇 数学
    • 456 篇 生物学
    • 398 篇 统计学(可授理学、...
    • 323 篇 物理学
    • 168 篇 系统科学
    • 147 篇 化学
  • 611 篇 管理学
    • 338 篇 管理科学与工程(可...
    • 299 篇 图书情报与档案管...
    • 174 篇 工商管理
  • 258 篇 医学
    • 212 篇 临床医学
    • 198 篇 基础医学(可授医学...
    • 119 篇 药学(可授医学、理...
    • 117 篇 公共卫生与预防医...
  • 114 篇 法学
    • 108 篇 社会学
  • 76 篇 经济学
    • 76 篇 应用经济学
  • 54 篇 农学
  • 38 篇 教育学
  • 16 篇 文学
  • 5 篇 军事学
  • 4 篇 艺术学
  • 3 篇 哲学
  • 2 篇 历史学

主题

  • 210 篇 machine learning
  • 172 篇 accuracy
  • 156 篇 deep learning
  • 96 篇 training
  • 88 篇 real-time system...
  • 82 篇 convolutional ne...
  • 80 篇 predictive model...
  • 70 篇 feature extracti...
  • 62 篇 optimization
  • 62 篇 computational mo...
  • 60 篇 forecasting
  • 59 篇 artificial intel...
  • 56 篇 data models
  • 55 篇 reinforcement le...
  • 54 篇 medical services
  • 51 篇 support vector m...
  • 50 篇 internet of thin...
  • 47 篇 machine learning...
  • 44 篇 data mining
  • 43 篇 semantics

机构

  • 122 篇 machine learning...
  • 60 篇 machine learning...
  • 52 篇 machine learning...
  • 46 篇 department of st...
  • 35 篇 machine learning...
  • 30 篇 machine learning...
  • 30 篇 department of ar...
  • 30 篇 nitte meenakshi ...
  • 28 篇 data science and...
  • 24 篇 munich center fo...
  • 22 篇 department of co...
  • 22 篇 center for data ...
  • 20 篇 department of ar...
  • 19 篇 department of ph...
  • 19 篇 machine learning...
  • 19 篇 department of co...
  • 19 篇 department of co...
  • 19 篇 center for machi...
  • 19 篇 munich center fo...
  • 19 篇 australian insti...

作者

  • 61 篇 ramdas aaditya
  • 35 篇 foster ian
  • 31 篇 prateek verma
  • 30 篇 pareek piyush ku...
  • 28 篇 piyush kumar par...
  • 27 篇 zhang kun
  • 25 篇 guizani mohsen
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 verma prateek
  • 22 篇 wasserman larry
  • 21 篇 chard kyle
  • 21 篇 müller klaus-rob...
  • 19 篇 huerta e.a.
  • 19 篇 xing eric p.
  • 19 篇 balakrishnan siv...
  • 18 篇 ravikumar pradee...
  • 18 篇 samek wojciech
  • 17 篇 montavon grégoir...
  • 17 篇 carneiro gustavo

语言

  • 3,211 篇 英文
  • 291 篇 其他
  • 3 篇 中文
检索条件"机构=Department of Data Science and Machine Learning Computer Science"
3507 条 记 录,以下是1-10 订阅
排序:
Script-to-Storyboard: A new contextual retrieval dataset and benchmark
收藏 引用
Computational Visual Media 2025年 第1期11卷 103-122页
作者: Xi Tian Yong-Liang Yang Qi Wu Department of Computer Science University of BathBath BA27AYUK Australian Institute for Machine Learning School of Computer ScienceThe University of AdelaideAdelaideSA 5005Australia
Storyboards comprising key illustrations and images help filmmakers to outline ideas,key moments,and story events when filming *** by this,we introduce the first contextual benchmark dataset Script-to-Storyboard(Sc2St... 详细信息
来源: 评论
Optimized Automated Stock Trading using DQN and Double DQN
Optimized Automated Stock Trading using DQN and Double DQN
收藏 引用
2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems, IACIS 2024
作者: Bharadwaj, Gurudutt S Pratap, David Darapaneni, Narayana Pes University Department of Computer Science Bengaluru India Great Learning Department of Data Science and Machine Learning Bengaluru India
Stock Portfolio management involves managing the buying, holding and selling decisions for the various stocks in the portfolio. There has been work where Reinforcement learning (RL) based actor-critic methods like Dee... 详细信息
来源: 评论
Privacy Preserving data Imputation via Multi-party Computation for Medical Applications
Privacy Preserving Data Imputation via Multi-party Computati...
收藏 引用
2024 IEEE International Conference on E-Health Networking, Application and Services, HealthCom 2024
作者: Jentsch, Julia Ünal, Ali Burak Mağara, Şeyma Selcan Akgün, Mete Department of Computer Science Medical Data Privacy and Privacy Preserving Machine Learning Tübingen Germany
Handling missing data is crucial in machine learning, but many datasets contain gaps due to errors or non-response. Unlike traditional methods such as listwise deletion, which are simple but inadequate, the literature... 详细信息
来源: 评论
Diffusion models for 3D generation: A survey
收藏 引用
Computational Visual Media 2025年 第1期11卷 1-28页
作者: Chen Wang Hao-Yang Peng Ying-Tian Liu Jiatao Gu Shi-Min Hu Department of Computer and Information Science University of PennsylvaniaPhiladelphiaPennsylvania 19104USA Department of Computer Science and Technology Tsinghua UniversityBeijing 100084China Machine Learning Research Apple AI/MLNew YorkUSA.E-mail:jiatao@***
Denoising diffusion models have demonstrated tremendous success in modeling data distributions and synthesizing high-quality *** the 2D image domain,they have become the state-of-the-art and are capable of generating ... 详细信息
来源: 评论
Facial Expression Recognition Using machine learning and Deep learning Techniques: A Systematic Review
收藏 引用
SN computer science 2024年 第4期5卷 432页
作者: Mohana, M. Subashini, P. Centre for Machine Learning and Intelligence Department of Computer Science Avinashilingam Institute Coimbatore India
In the contemporary era, Facial Expression Recognition (FER) plays a pivotal role in numerous fields due to its vast application areas, such as e-learning, healthcare, marketing, and psychology, to name a few examples... 详细信息
来源: 评论
Finding the transcription factor binding locations using novel algorithm segmentation to filtration (S2F)
收藏 引用
Journal of Ambient Intelligence and Humanized Computing 2024年 第9期15卷 3347-3358页
作者: Theepalakshmi, P. Srinivasulu Reddy, U. Department of Computer Science and Engineering Gandhi Institute of Technology and Management Karnataka Bengaluru India Machine Learning and Data Analytics Lab Center of Excellence in Artificial Intelligence Department of Computer Applications National Institute of Technology Tamilnadu Tiruchirappalli India
The primary aim of identifying the binding motifs in gene regulation is to understand the transcriptional regulation molecular mechanism systematically. In this study, the (, d) motif search issue was considered ... 详细信息
来源: 评论
Accelerating multiscale electronic stopping power predictions with timedependent density functional theory and machine learning
收藏 引用
npj Computational Materials 2024年 第1期10卷 993-1002页
作者: Logan Ward Ben Blaiszik Cheng-Wei Lee Troy Martin Ian Foster AndréSchleife Data Science and Learning Division Argonne National LaboratoryLemontIL60437USA Department of Computer Science The University of ChicagoChicagoIL60637USA Department of Materials Science and Engineering University of Illinois at Urbana-Champaign UrbanaUrbanaIL61801USA
Knowing the rate at which particle radiation releases energy in a material,the“stopping power,”is key to designing nuclear reactors,medical treatments,semiconductor and quantum materials,and many other *** the nucle... 详细信息
来源: 评论
Towards a Similarity-adjusted Surprisal Theory
Towards a Similarity-adjusted Surprisal Theory
收藏 引用
2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
作者: Meister, Clara Giulianelli, Mario Pimentel, Tiago ETH Zürich Department of Computer Science Institute for Machine Learning Switzerland
Surprisal theory posits that the cognitive effort required to comprehend a word is determined by its contextual predictability, quantified as surprisal. Traditionally, surprisal theory treats words as distinct entitie...
来源: 评论
Automated Quality Assessment Using Appearance-Based Simulations and Hippocampus Segmentation on Low-Field Paediatric Brain MR Images  1st
Automated Quality Assessment Using Appearance-Based Simulati...
收藏 引用
1st MICCAI Challenge on Low Field Pediatric Brain Magnetic Resonance Image Segmentation and Quality Assurance, LISA 2024, held in Conjunction with Medical Image Computing and computer Assisted Intervention Conference, MICCAI 2024
作者: Sundaresan, Vaanathi Dinsdale, Nicola K Department of Computational and Data Sciences Indian Institute of Science Bangalore560012 India Oxford Machine Learning in NeuroImaging Lab Department of Computer Science University of Oxford Oxford United Kingdom
Understanding the structural growth of paediatric brains is a key step in the identification of various neuro-developmental disorders. However, our knowledge is limited by many factors, including the lack of automated... 详细信息
来源: 评论
Image Recognition for Wildlife Conservation
Image Recognition for Wildlife Conservation
收藏 引用
2025 IEEE International Conference on Computational, Communication and Information Technology, ICCCIT 2025
作者: Charanya, P. Sridharan, S. Yuvan Shankar, S. Sriram, M. Yashvanth, K.P. Department of Artificial Intelligence and Machine Learning Coimbatore India Department of Artificial Intelligence and Data Science Coimbatore India
This study adopts an empirical approach to evaluate the efficacy of image processing methods in conservation efforts for animals. The initial phase involves the collection of data from various sources within the natur... 详细信息
来源: 评论