咨询与建议

限定检索结果

文献类型

  • 1,990 篇 会议
  • 1,630 篇 期刊文献
  • 11 册 图书

馆藏范围

  • 3,631 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,224 篇 工学
    • 1,702 篇 计算机科学与技术...
    • 1,447 篇 软件工程
    • 454 篇 信息与通信工程
    • 409 篇 生物工程
    • 372 篇 控制科学与工程
    • 309 篇 生物医学工程(可授...
    • 230 篇 光学工程
    • 226 篇 电气工程
    • 161 篇 电子科学与技术(可...
    • 109 篇 安全科学与工程
    • 107 篇 化学工程与技术
    • 105 篇 机械工程
    • 102 篇 网络空间安全
    • 93 篇 仪器科学与技术
    • 63 篇 动力工程及工程热...
  • 1,476 篇 理学
    • 824 篇 数学
    • 461 篇 生物学
    • 405 篇 统计学(可授理学、...
    • 334 篇 物理学
    • 169 篇 系统科学
    • 152 篇 化学
  • 629 篇 管理学
    • 354 篇 管理科学与工程(可...
    • 305 篇 图书情报与档案管...
    • 183 篇 工商管理
  • 272 篇 医学
    • 223 篇 临床医学
    • 204 篇 基础医学(可授医学...
    • 126 篇 公共卫生与预防医...
    • 119 篇 药学(可授医学、理...
  • 112 篇 法学
    • 106 篇 社会学
  • 77 篇 经济学
    • 77 篇 应用经济学
  • 52 篇 农学
  • 40 篇 教育学
  • 17 篇 文学
  • 5 篇 军事学
  • 4 篇 艺术学
  • 3 篇 哲学
  • 2 篇 历史学

主题

  • 214 篇 machine learning
  • 194 篇 accuracy
  • 174 篇 deep learning
  • 105 篇 real-time system...
  • 103 篇 training
  • 89 篇 convolutional ne...
  • 85 篇 predictive model...
  • 78 篇 feature extracti...
  • 71 篇 computational mo...
  • 63 篇 artificial intel...
  • 61 篇 optimization
  • 60 篇 medical services
  • 60 篇 forecasting
  • 59 篇 data models
  • 57 篇 reinforcement le...
  • 53 篇 support vector m...
  • 53 篇 machine learning...
  • 52 篇 internet of thin...
  • 46 篇 data mining
  • 43 篇 semantics

机构

  • 123 篇 machine learning...
  • 61 篇 machine learning...
  • 55 篇 machine learning...
  • 48 篇 department of st...
  • 36 篇 machine learning...
  • 31 篇 department of ar...
  • 30 篇 machine learning...
  • 30 篇 nitte meenakshi ...
  • 28 篇 data science and...
  • 25 篇 munich center fo...
  • 23 篇 department of ar...
  • 23 篇 department of co...
  • 23 篇 center for data ...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 19 篇 department of co...
  • 19 篇 department of co...
  • 19 篇 center for machi...
  • 19 篇 munich center fo...
  • 18 篇 department of ph...

作者

  • 62 篇 ramdas aaditya
  • 33 篇 foster ian
  • 32 篇 prateek verma
  • 30 篇 pareek piyush ku...
  • 27 篇 guizani mohsen
  • 26 篇 zhang kun
  • 26 篇 piyush kumar par...
  • 24 篇 pontil massimili...
  • 22 篇 eklund anders
  • 22 篇 wasserman larry
  • 21 篇 verma prateek
  • 20 篇 chard kyle
  • 20 篇 müller klaus-rob...
  • 19 篇 huerta e.a.
  • 19 篇 xing eric p.
  • 19 篇 balakrishnan siv...
  • 18 篇 ravikumar pradee...
  • 18 篇 samek wojciech
  • 17 篇 carneiro gustavo
  • 17 篇 mohsen guizani

语言

  • 2,445 篇 英文
  • 1,183 篇 其他
  • 8 篇 中文
  • 1 篇 斯洛文尼亚文
检索条件"机构=Department of Data Science and Machine Learning Computer Science"
3631 条 记 录,以下是3381-3390 订阅
Exponential Concentration for Mutual Information Estimation with Application to Forests  12
Exponential Concentration for Mutual Information Estimation ...
收藏 引用
Annual Conference on Neural Information Processing Systems
作者: Han Liu John Lafferty Larry Wasserman Department of Operations Research and Financial Engineering Princeton University NJ 08544 Department of Computer Science Department of Statistics University of Chicago IL 60637 Department of Statistics Machine Learning Department Carnegie Mellon University PA 15231
We prove a new exponential concentration inequality for a plug-in estimator of the Shannon mutual information. Previous results on mutual information estimation only bounded expected error. The advantage of having the... 详细信息
来源: 评论
Sample selection based on multiple incremental decision trees in BSP programming library
Sample selection based on multiple incremental decision tree...
收藏 引用
2012 International Conference on machine learning and Cybernetics, ICMLC 2012
作者: Wang, Shuo Wang, Jianjian Wang, Yi Wang, Xuezheng Machine Learning Center Faculty of Mathematics and Computer Science Hebei University Baoding 071002 China Department of Electronics and Communication Engineering North China Electric Power University Baoding 071003 China General Surgery Department 309th Hospital of PLA 17 A Heishanhu Street Haidian District Beijing 100091 China Defending Faculty Political Ministry of the 68307 Army Zhangye in Gansu 734000 China
The sample selection is a key in the active learning, because it intends to select the best informative sample which has no label from the pool or online. And then the selected sample needs to be added into the traini... 详细信息
来源: 评论
AI@NICTA
AI@NICTA
收藏 引用
作者: Barnes, Nick Baumgartner, Peter Caetano, Tiberio Durrant-Whyte, Hugh Klein, Gerwin Sanderson, Penelope Sattar, Abdul Stuckey, Peter Thiebaux, Sylvie Van Hentenryck, Pascal Walsh, Toby NICTA Australia Software Systems Research Group NICTA Australia Machine Learning Research Group NICTA Australia Trustworthy Systems Project NICTA Australia University of Queensland Australia Institute for Integrated and Intelligent Systems Griffith University Australia Department of Computing and Information Systems University of Melbourne Australia School of Computer Science Australian National University Australia Melbourne School of Engineering Australia
National Information and Communications Technology Australia (NICTA) is the largest ICT research center in Australia, having been established 10 years ago in 2002. It has five laboratories in four Australian capital c... 详细信息
来源: 评论
Lagrangian Relaxation for Large-Scale Multi-agent Planning
Lagrangian Relaxation for Large-Scale Multi-agent Planning
收藏 引用
IEEE WIC ACM International Conference on Web Intelligence (WI)
作者: Geoffrey J. Gordon Pradeep Varakantham William Yeoh Hoong Chuin Lau Ajay S. Aravamudhan Shih-Fen Cheng Machine Learning Department Carnegie Mellon University Pittsburgh PA USA School of Information Systems Singapore Management University Singapore Computer Science Department New Mexico State University Las Cruces NM USA
Multi-agent planning is a well-studied problem with various applications including disaster rescue, urban transportation and logistics, both for autonomous agents and for decision support to humans. Due to computation...
来源: 评论
First study towards linear control of an upper-limb neuroprosthesis with an EEG-based Brain-computer Interface
First study towards linear control of an upper-limb neuropro...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Javier Pascual Francisco Velasco-Élvarez Klaus-Robert Müller Carmen Vidaurre Machine Learning Group Computer Science Faculty Berlin Institute of Technology Berlin Germany Department of Electrical Engineering University of Malaga Malaga Spain Bernstein Focus: Neurotechnology Berlin and Department of Brain and Cognitive Engineering Korea University South Korea
In this study we show how healthy subjects are able to use a non-invasive Motor Imagery (MI)-based Brain computer Interface (BCI) to achieve linear control of an upper-limb neuromuscular electrical stimulation (NMES) ... 详细信息
来源: 评论
Predictive modeling of cardiovascular complications in incident hemodialysis patients
Predictive modeling of cardiovascular complications in incid...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
作者: J. Ion Titapiccolo M. Ferrario C. Barbieri D. Marcelli F. Mari E. Gatti S. Cerutti P. Smyth M. G. Signorini Politecnico di Milano Department of Bioengineering P.zza Leonardo da Vinci 32 20133 Milano Italy Fresenius Medical Care E Kroenerstrasse 1 61352 Bad Homburg University of California Irvine CA 92697-3435 Department of Computer Science Center for Machine Learning and Intelligent Systems
The administration of hemodialysis (HD) treatment leads to the continuous collection of a vast quantity of medical data. Many variables related to the patient health status, to the treatment, and to dialyzer settings ... 详细信息
来源: 评论
Improved neural fitted Q iteration applied to a novel computer gaming and learning benchmark
Improved neural fitted Q iteration applied to a novel comput...
收藏 引用
IEEE Symposium on Adaptive Dynamic Programming and Reinforcement learning
作者: Gabel, Thomas Lutz, Christian Riedmiller, Martin Machine Learning Lab Department of Computer Science University of Freiburg 79110 Freiburg Germany
Neural batch reinforcement learning (RL) algorithms have recently shown to be a powerful tool for model-free reinforcement learning problems. In this paper, we present a novel learning benchmark from the realm of comp... 详细信息
来源: 评论
Smoothing multivariate performance measures
收藏 引用
The Journal of machine learning Research 2012年 第1期13卷
作者: Xinhua Zhang Ankan Saha S. V. N. Vishwanathan Machine Learning Group NICTA Canberra Australia and Department of Computing Science University of Alberta Alberta Innovates Center for Machine Learning Edmonton Alberta Canada Department of Computer Science University of Chicago Chicago IL Departments of Statistics and Computer Science Purdue University West Lafayette IN
Optimizing multivariate performance measure is an important task in machine learning. Joachims (2005) introduced a Support Vector Method whose underlying optimization problem is commonly solved by cutting plane method... 详细信息
来源: 评论
Improved loss bounds for multiple kernel learning
Improved loss bounds for multiple kernel learning
收藏 引用
14th International Conference on Artificial Intelligence and Statistics, AISTATS 2011
作者: Hussain, Zakria Shawe-Taylor, John Centre for Computational Statistics and Machine Learning Department of Computer Science University College London United Kingdom
We propose two new generalization error bounds for multiple kernel learning (MKL). First, using the bound of Srebro and Ben-David (2006) as a starting point, we derive a new version which uses a simple counting argume... 详细信息
来源: 评论
Reports of the AAAI 2012 conference workshops
Reports of the AAAI 2012 conference workshops
收藏 引用
作者: Agrawal, Vikas Baier, Jorge Bekris, Kostas Chen, Yiling D'Avila Garcez, Artur S. Hitzler, Pascal Haslum, Patrik Jannach, Dietmar Law, Edith Lecue, Freddy Lamb, Luis C. Matuszek, Cynthia Palacios, Hector Srivastava, Biplav Shastri, Lokendra Sturtevant, Nathan Stern, Roni Tellex, Stefanie Vassos, Stavros Center for Knowledge Driven Intelligent Systems Enterprise Technology Research Labs Infosys Limited India Pontificia Universidad Católica de Chile Chile Rutgers University NJ United States Harvard University United States City University London United Kingdom Wright State University Dayton OH United States Australian National University Australia TU Dortmund Germany Machine Learning Department Carnegie Mellon University United States IBM Research - Smarter Cities Technology Centre Dublin Ireland Federal University of Rio Grande do Sul Porto Alegre Brazil Computer Science and Engineering Department University of Washington United States Universidad Carlos III de Madrid Spain IBM Research - India India University of Denver United States Ben Gurion University Negev Israel Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology United States Department of Informatics and Telecommunications National and Kapodistrian University of Athens Athens Greece
The AAAI-12 Workshop program was held Sunday and Monday, July 22-23, 2012, at the Sheraton Centre Toronto Hotel in Toronto, Ontario, Canada. The AAAI-12 workshop program included nine workshops covering a wide range o... 详细信息
来源: 评论