咨询与建议

限定检索结果

文献类型

  • 1,946 篇 会议
  • 1,618 篇 期刊文献
  • 11 册 图书

馆藏范围

  • 3,575 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,196 篇 工学
    • 1,683 篇 计算机科学与技术...
    • 1,435 篇 软件工程
    • 442 篇 信息与通信工程
    • 410 篇 生物工程
    • 362 篇 控制科学与工程
    • 308 篇 生物医学工程(可授...
    • 228 篇 光学工程
    • 218 篇 电气工程
    • 155 篇 电子科学与技术(可...
    • 107 篇 化学工程与技术
    • 104 篇 安全科学与工程
    • 101 篇 机械工程
    • 95 篇 网络空间安全
    • 89 篇 仪器科学与技术
    • 61 篇 动力工程及工程热...
  • 1,461 篇 理学
    • 816 篇 数学
    • 460 篇 生物学
    • 400 篇 统计学(可授理学、...
    • 330 篇 物理学
    • 170 篇 系统科学
    • 151 篇 化学
  • 617 篇 管理学
    • 342 篇 管理科学与工程(可...
    • 302 篇 图书情报与档案管...
    • 178 篇 工商管理
  • 267 篇 医学
    • 220 篇 临床医学
    • 204 篇 基础医学(可授医学...
    • 122 篇 公共卫生与预防医...
    • 119 篇 药学(可授医学、理...
  • 113 篇 法学
    • 107 篇 社会学
  • 75 篇 经济学
    • 75 篇 应用经济学
  • 54 篇 农学
  • 39 篇 教育学
  • 16 篇 文学
  • 5 篇 军事学
  • 4 篇 艺术学
  • 3 篇 哲学
  • 2 篇 历史学

主题

  • 214 篇 machine learning
  • 179 篇 accuracy
  • 159 篇 deep learning
  • 98 篇 training
  • 92 篇 real-time system...
  • 86 篇 convolutional ne...
  • 82 篇 predictive model...
  • 70 篇 feature extracti...
  • 64 篇 computational mo...
  • 62 篇 optimization
  • 60 篇 forecasting
  • 58 篇 artificial intel...
  • 57 篇 reinforcement le...
  • 57 篇 medical services
  • 57 篇 data models
  • 51 篇 support vector m...
  • 51 篇 machine learning...
  • 50 篇 internet of thin...
  • 44 篇 data mining
  • 43 篇 semantics

机构

  • 123 篇 machine learning...
  • 60 篇 machine learning...
  • 55 篇 machine learning...
  • 46 篇 department of st...
  • 36 篇 machine learning...
  • 30 篇 machine learning...
  • 30 篇 department of ar...
  • 30 篇 nitte meenakshi ...
  • 27 篇 data science and...
  • 23 篇 center for data ...
  • 23 篇 munich center fo...
  • 22 篇 department of co...
  • 20 篇 center for machi...
  • 20 篇 australian insti...
  • 20 篇 department of ar...
  • 19 篇 department of ph...
  • 19 篇 machine learning...
  • 19 篇 department of co...
  • 19 篇 department of co...
  • 19 篇 munich center fo...

作者

  • 62 篇 ramdas aaditya
  • 35 篇 foster ian
  • 31 篇 prateek verma
  • 30 篇 pareek piyush ku...
  • 27 篇 zhang kun
  • 27 篇 piyush kumar par...
  • 26 篇 guizani mohsen
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 verma prateek
  • 22 篇 wasserman larry
  • 21 篇 chard kyle
  • 20 篇 müller klaus-rob...
  • 19 篇 huerta e.a.
  • 19 篇 xing eric p.
  • 19 篇 balakrishnan siv...
  • 18 篇 ravikumar pradee...
  • 18 篇 samek wojciech
  • 17 篇 carneiro gustavo
  • 17 篇 mohsen guizani

语言

  • 3,127 篇 英文
  • 443 篇 其他
  • 3 篇 中文
检索条件"机构=Department of Data Science and Machine Learning Computer Science"
3575 条 记 录,以下是3391-3400 订阅
排序:
Online Markov decision processes under bandit feedback  10
Online Markov decision processes under bandit feedback
收藏 引用
Proceedings of the 24th International Conference on Neural Information Processing Systems - Volume 2
作者: Gergely Neu András György Csaba Szepesvári András Antos Department of Computer Science and Information Theory Budapest University of Technology and Economics Hungary Machine Learning Research Group MTA SZTAKI Institute for Computer Science and Control Hungary Department of Computing Science University of Alberta Canada Machine Learning Research Group MTA SZTAKI Institute for Computer Science and Control Hungary
We consider online learning in finite stochastic Markovian environments where in each time step a new reward function is chosen by an oblivious adversary. The goal of the learning agent is to compete with the best sta...
来源: 评论
A new instance selection algorithm based on contribution for nearest neighbour classification
A new instance selection algorithm based on contribution for...
收藏 引用
International Conference on machine learning and Cybernetics
作者: Cai, Yong-Hua Wu, Bo He, Yu-Lin Zhang, Ye Department of Mathematics and Computer Science Hebei Normal University for Nationalities Chengde067000 Hebei China Automation Department Chengde Iron and Steel Branch Hebei Iron and Steel Group Co. Ltd. Chengde 067000 Hebei China Key Lab. of Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Baoding 071002 Hebei China
Nearest Neighbor Classifier is one of the most classical lazy learning schemes. The basic nearest neighbor classifiers suffer from the common problem that the instances used to train the classifier are all stored indi... 详细信息
来源: 评论
Efficient protein-ligand docking using sustainable evolutionary algorithms
Efficient protein-ligand docking using sustainable evolution...
收藏 引用
International Conference on Hybrid Intelligent Systems (HIS)
作者: Emrah Atilgan Jianjun Hu Machine Learning and Evolution Laboratory Department of Computer Science and Engineering University of South Carolina Columbia SC USA
AutoDock is a widely used automated protein docking program in structure-based drug-design. Different search algorithms such as simulated annealing, traditional genetic algorithm (GA) and Lamarckian genetic algorithm ... 详细信息
来源: 评论
2-Stage instance selection algorithm for KNN based on Nearest Unlike Neighbors
2-Stage instance selection algorithm for KNN based on Neares...
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Chun-Ru Dong Patrick P. K. Chan Wing W. Y. Ng Daniel S. Yeung Department of Mathematics and Computer Science Hebei University Baoding China Machine Learning and Cybernetics Research Center School of Computer Science and Engineering South China University of Technology Guangzhou China
For the virtues such as simplicity, high generalization capability, and few training cost, the K-Nearest-Neighbor (KNN) classifier is widely used in pattern recognition and machine learning. However, the computation c... 详细信息
来源: 评论
Pool-based active learning based on incremental decision tree
Pool-based active learning based on incremental decision tre...
收藏 引用
International Conference on machine learning and Cybernetics
作者: Wang, Shuo Wang, Jian-Jian Gao, Xiang-Hui Wang, Xue-Zheng Machine Learning Center Faculty of Mathematics and Computer Science Hebei University Baoding 071002 China Department of Electronics and Communication Engineering North China Electric Power University Baoding 071003 China Defending Faculty Political Ministry of the 68307 Army Zhangye in Gansu 734000 China
The pool-based active learning intends to collect the samples into the pool firstly, and selects the best informative sample from it which has no label to add into the training sets for updating the classifier secondl... 详细信息
来源: 评论
Construction of radial basis function neural networks via a minimization of its localized generalization error
Construction of radial basis function neural networks via a ...
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Daniel S. Yeung Bin-Bin Sun Wing W. Y. Ng Patrick P. K. Chan Machine Learning and Cybernetics Research Center School of Computer Science and Engineering South China University of Technology China Department of Computer Science Harbin Institute of Technology Harbin Institute of Technology China
Lots of researchers have been studying on how to construct radial basis function neural networks. To determine the number and location of hidden neurons, a recursive procedure is adopted with a new evaluation criterio... 详细信息
来源: 评论
Sensitivity analysis of multilayer percetron based on elastic function
Sensitivity analysis of multilayer percetron based on elasti...
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Chun-Guo Li Hai-Feng Li Yu-Fen Zhang Qun-Feng Zhang Machine Learning Center Faculty of Mathematics and Computer Science Hebei University Baoding China Department of Educational Administration Hebei University Baoding China
The sensitivity analysis can help to construct a tightly neural network. There are several methods to define the sensitivity of input and weight for perturbations to the trained neural network. This paper proposed a s... 详细信息
来源: 评论
Expectation propagation for bayesian multi-task feature selection
Expectation propagation for bayesian multi-task feature sele...
收藏 引用
European Conference on machine learning and Principles and Practice of Knowledge Discovery in databases, ECML PKDD 2010
作者: Hernández-Lobato, Daniel Hernández-Lobato, José Miguel Helleputte, Thibault Dupont, Pierre Machine Learning Group ICTEAM Institute Université Catholique de Louvain Place Sainte Barbe 2 B-1348 Louvain-la-Neuve Belgium Computer Science Department Universidad Autónoma de Madrid C/ Francisco Tomás y Valiente 11 28049 Madrid Spain
In this paper we propose a Bayesian model for multi-task feature selection. This model is based on a generalized spike and slab sparse prior distribution that enforces the selection of a common subset of features acro... 详细信息
来源: 评论
Semantic clustering using multiple ontologies
Semantic clustering using multiple ontologies
收藏 引用
作者: Batet, Montserrat Valls, Aïda Gibert, Karina Sánchez, David Research Group Department of Computer Science and Mathematics Universitat Rovira i Virgili Avda. Països Catalans 26 43007 Tarragona Catalunya Spain Knowledge Engineering and Machine Learning Group Department of Statistics and Operations Research Universitat Politècnica de Catalunya Spain
data mining tools able to semantically interpret textual or linguistic data are acquiring a growing importance. Moreover, the development of large ontologies for general and specific domains provides new tools to incl... 详细信息
来源: 评论
I want to go home: Empowering the lost mobile device
I want to go home: Empowering the lost mobile device
收藏 引用
IEEE International Conference on Wireless and Mobile Computing, Networking And Communications (WiMob)
作者: Chi Zhang Robert W.H. Fisher Joel Wein Department of Computer Science and Engineering Polytechnic Institute of New York University Brooklyn NY USA Department of Machine Learning Carnegie Mellon University Pittsburgh PA USA
It is estimated that over 8 million cell phones are lost or stolen each year [7]; often the loss of a cell phone means the loss of personal data, time and enormous aggravation. In this paper we present machine-learnin... 详细信息
来源: 评论