咨询与建议

限定检索结果

文献类型

  • 1,946 篇 会议
  • 1,618 篇 期刊文献
  • 11 册 图书

馆藏范围

  • 3,575 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,196 篇 工学
    • 1,683 篇 计算机科学与技术...
    • 1,435 篇 软件工程
    • 442 篇 信息与通信工程
    • 410 篇 生物工程
    • 362 篇 控制科学与工程
    • 308 篇 生物医学工程(可授...
    • 228 篇 光学工程
    • 218 篇 电气工程
    • 155 篇 电子科学与技术(可...
    • 107 篇 化学工程与技术
    • 104 篇 安全科学与工程
    • 101 篇 机械工程
    • 95 篇 网络空间安全
    • 89 篇 仪器科学与技术
    • 61 篇 动力工程及工程热...
  • 1,461 篇 理学
    • 816 篇 数学
    • 460 篇 生物学
    • 400 篇 统计学(可授理学、...
    • 330 篇 物理学
    • 170 篇 系统科学
    • 151 篇 化学
  • 617 篇 管理学
    • 342 篇 管理科学与工程(可...
    • 302 篇 图书情报与档案管...
    • 178 篇 工商管理
  • 267 篇 医学
    • 220 篇 临床医学
    • 204 篇 基础医学(可授医学...
    • 122 篇 公共卫生与预防医...
    • 119 篇 药学(可授医学、理...
  • 113 篇 法学
    • 107 篇 社会学
  • 75 篇 经济学
    • 75 篇 应用经济学
  • 54 篇 农学
  • 39 篇 教育学
  • 16 篇 文学
  • 5 篇 军事学
  • 4 篇 艺术学
  • 3 篇 哲学
  • 2 篇 历史学

主题

  • 214 篇 machine learning
  • 179 篇 accuracy
  • 159 篇 deep learning
  • 98 篇 training
  • 92 篇 real-time system...
  • 86 篇 convolutional ne...
  • 82 篇 predictive model...
  • 70 篇 feature extracti...
  • 64 篇 computational mo...
  • 62 篇 optimization
  • 60 篇 forecasting
  • 58 篇 artificial intel...
  • 57 篇 reinforcement le...
  • 57 篇 medical services
  • 57 篇 data models
  • 51 篇 support vector m...
  • 51 篇 machine learning...
  • 50 篇 internet of thin...
  • 44 篇 data mining
  • 43 篇 semantics

机构

  • 123 篇 machine learning...
  • 60 篇 machine learning...
  • 55 篇 machine learning...
  • 46 篇 department of st...
  • 36 篇 machine learning...
  • 30 篇 machine learning...
  • 30 篇 department of ar...
  • 30 篇 nitte meenakshi ...
  • 27 篇 data science and...
  • 23 篇 center for data ...
  • 23 篇 munich center fo...
  • 22 篇 department of co...
  • 20 篇 center for machi...
  • 20 篇 australian insti...
  • 20 篇 department of ar...
  • 19 篇 department of ph...
  • 19 篇 machine learning...
  • 19 篇 department of co...
  • 19 篇 department of co...
  • 19 篇 munich center fo...

作者

  • 62 篇 ramdas aaditya
  • 35 篇 foster ian
  • 31 篇 prateek verma
  • 30 篇 pareek piyush ku...
  • 27 篇 zhang kun
  • 27 篇 piyush kumar par...
  • 26 篇 guizani mohsen
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 verma prateek
  • 22 篇 wasserman larry
  • 21 篇 chard kyle
  • 20 篇 müller klaus-rob...
  • 19 篇 huerta e.a.
  • 19 篇 xing eric p.
  • 19 篇 balakrishnan siv...
  • 18 篇 ravikumar pradee...
  • 18 篇 samek wojciech
  • 17 篇 carneiro gustavo
  • 17 篇 mohsen guizani

语言

  • 3,127 篇 英文
  • 443 篇 其他
  • 3 篇 中文
检索条件"机构=Department of Data Science and Machine Learning Computer Science"
3575 条 记 录,以下是3441-3450 订阅
Estimating labels from label proportions  08
Estimating labels from label proportions
收藏 引用
25th International Conference on machine learning
作者: Quadrianto, Novi Smola, Alex J. Caetano, Tiberio S. Le, Quoc V. Statistical Machine Learning NICTA and RSISE Australian National University Computer Science Department Stanford University
Consider the following problem: given sets of unlabeled observations, each set with known label proportions, predict the labels of another set of observations, also with known label proportions. This problem appears i... 详细信息
来源: 评论
The true sample complexity of active learning
The true sample complexity of active learning
收藏 引用
21st Annual Conference on learning Theory, COLT 2008
作者: Balcan, Maria-Florina Hanneke, Steve Wortman, Jennifer Computer Science Department Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States Computer and Information Science University of Pennsylvania United States
We describe and explore a new perspective on the sample complexity of active learning. In many situations where it was generally believed that active learning does not help, we show that active learning does help in t... 详细信息
来源: 评论
A detecting peak's number technique for multimodal function optimization
收藏 引用
WSEAS Transactions on Information science and Applications 2008年 第2期5卷 37-43页
作者: Hua, Qiang Wu, Bin Tian, Hao Machine Learning Center Faculty of Mathematics and Computer Science Hebei University Baoding 071002 China Department of Planning and Development Handan Iron and Steel Co. Ltd. Handan 056015 China
A Detecting Peak's Number (DPN) technique is proposed for multimodal optimization. In DPN technique, we want to know the peak's number of locally multimodal domain of every individual, firstly we use the idea ... 详细信息
来源: 评论
Online Gaussian Mixture Model for concept modeling and discovery
Online Gaussian Mixture Model for concept modeling and disco...
收藏 引用
9th International Conference on Intelligent Technologies, Intech'08
作者: Fang, Chungheng Ralescu, Anca L. University of Cincinnati Department of Computer Science Machine Learning and Computational Intelligence Laboratory Cincinnati OH 45237-0030 United States
Concept discovery and modeling are fundamental problems in machine learning research. Real world concepts are usually high-dimensional and have complicated distributions along their dimensions. Gaussian Mixture Models... 详细信息
来源: 评论
Temozolomide displays antimigratory effects in human glioblastoma cells mediated through neuregulin-1 down-regulation
收藏 引用
Surgical Neurology 2009年 第1期71卷 134-134页
作者: F. Lefranc S. Spiegl-Kreinecker B. Haibe-Kains G. Bontempi C. Decaestecker W. Berger R. Kiss Department of Neurosurgery Erasme Academic Hospital Lab. Toxicology Inst. Pharmacy ULB Brussels Belgium Department of Neurosurgery Wagner Jauregg Hospital Linz MicroArray Unit Jules Bordet Institute Machine Learning Group Department of Computer Science ULB
来源: 评论
FilterBoost: Regression and classification on large datasets
FilterBoost: Regression and classification on large datasets
收藏 引用
21st Annual Conference on Neural Information Processing Systems, NIPS 2007
作者: Bradley, Joseph K. Schapire, Robert E. Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States Department of Computer Science Princeton University Princeton NJ 08540 United States
We study boosting in the filtering setting, where the booster draws examples from an oracle instead of using a fixed training set and so may train efficiently on very large datasets. Our algorithm, which is based on a... 详细信息
来源: 评论
No-regret learning in convex games  08
No-regret learning in convex games
收藏 引用
25th International Conference on machine learning
作者: Gordon, Geoffrey J. Greenwald, Amy Marks, Casey Machine Learning Department Carnegie Mellon University Pittsburgh PA 15213 United States Department of Computer Science Brown University Providence RI 02912 United States
Quite a bit is known about minimizing different kinds of regret in experts problems, and how these regret types relate to types of equilibria in the multiagent setting of repeated matrix games. Much less is known abou... 详细信息
来源: 评论
Discovering cyclic causal models by independent components analysis
Discovering cyclic causal models by independent components a...
收藏 引用
作者: Lacerda, Gustavo Spirtes, Peter Ramsey, Joseph Hoyer, Patrik O. Machine Learning Department School of Computer Science Carnegie Mellon University Pittsburgh PA 15213 United States Department of Philosophy Carnegie Mellon University Pittsburgh PA 15213 United States Dept. of Computer Science University of Helsinki Helsinki Finland
We generalize Shimizu et al's (2006) ICA-based approach for discovering linear non-Gaussian acyclic (LiNGAM) Structural Equation Models (SEMs) from causally sufficient, continuous-valued observational data. By rel... 详细信息
来源: 评论
Adaptive Feature Thresholding for off-line signature verification
Adaptive Feature Thresholding for off-line signature verific...
收藏 引用
International Conference on Image and Vision Computing New Zealand, IVCNZ
作者: Robert Larkins Michael Mayo Machine Learning Group Department of Computer Science University of Waikato New Zealand
This paper introduces Adaptive Feature Thresholding (AFT) which is a novel method of person-dependent off-line signature verification. AFT enhances how a simple image feature of a signature is converted to a binary fe... 详细信息
来源: 评论
Joint latent topic models for text and citations
Joint latent topic models for text and citations
收藏 引用
14th ACM SIGKDD International Conference on Knowledge Discovery and data Mining, KDD 2008
作者: Nallapati, Ramesh M. Ahmed, Amr Xing, Eric P. Cohen, William W. Computer Science Department Stanford University 353 Serra Mall Stanford CA 94305 United States Machine Learning Department Carnegie Mellon University 5000 Forbes Avenue Pittsburgh PA 15213 United States
In this work, we address the problem of joint modeling of text and citations in the topic modeling framework. We present two different models called the Pairwise-Link-LDA and the Link-PLSA-LDA models. The Pairwise-Lin... 详细信息
来源: 评论