咨询与建议

限定检索结果

文献类型

  • 1,918 篇 会议
  • 1,611 篇 期刊文献
  • 11 册 图书

馆藏范围

  • 3,540 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,171 篇 工学
    • 1,667 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 439 篇 信息与通信工程
    • 406 篇 生物工程
    • 350 篇 控制科学与工程
    • 303 篇 生物医学工程(可授...
    • 227 篇 光学工程
    • 212 篇 电气工程
    • 155 篇 电子科学与技术(可...
    • 107 篇 化学工程与技术
    • 103 篇 安全科学与工程
    • 100 篇 机械工程
    • 93 篇 网络空间安全
    • 89 篇 仪器科学与技术
    • 61 篇 动力工程及工程热...
  • 1,445 篇 理学
    • 810 篇 数学
    • 457 篇 生物学
    • 398 篇 统计学(可授理学、...
    • 323 篇 物理学
    • 168 篇 系统科学
    • 147 篇 化学
  • 612 篇 管理学
    • 339 篇 管理科学与工程(可...
    • 299 篇 图书情报与档案管...
    • 174 篇 工商管理
  • 259 篇 医学
    • 212 篇 临床医学
    • 199 篇 基础医学(可授医学...
    • 119 篇 药学(可授医学、理...
    • 117 篇 公共卫生与预防医...
  • 114 篇 法学
    • 108 篇 社会学
  • 76 篇 经济学
    • 76 篇 应用经济学
  • 54 篇 农学
  • 38 篇 教育学
  • 16 篇 文学
  • 5 篇 军事学
  • 4 篇 艺术学
  • 3 篇 哲学
  • 2 篇 历史学

主题

  • 211 篇 machine learning
  • 174 篇 accuracy
  • 158 篇 deep learning
  • 98 篇 training
  • 91 篇 real-time system...
  • 85 篇 convolutional ne...
  • 81 篇 predictive model...
  • 70 篇 feature extracti...
  • 63 篇 computational mo...
  • 62 篇 optimization
  • 60 篇 forecasting
  • 59 篇 artificial intel...
  • 57 篇 data models
  • 56 篇 medical services
  • 55 篇 reinforcement le...
  • 51 篇 support vector m...
  • 50 篇 internet of thin...
  • 48 篇 machine learning...
  • 44 篇 data mining
  • 43 篇 semantics

机构

  • 122 篇 machine learning...
  • 60 篇 machine learning...
  • 55 篇 machine learning...
  • 46 篇 department of st...
  • 35 篇 machine learning...
  • 30 篇 machine learning...
  • 30 篇 department of ar...
  • 30 篇 nitte meenakshi ...
  • 28 篇 data science and...
  • 24 篇 munich center fo...
  • 22 篇 department of co...
  • 22 篇 center for data ...
  • 20 篇 department of ar...
  • 19 篇 department of ph...
  • 19 篇 machine learning...
  • 19 篇 department of co...
  • 19 篇 department of co...
  • 19 篇 center for machi...
  • 19 篇 munich center fo...
  • 19 篇 australian insti...

作者

  • 61 篇 ramdas aaditya
  • 35 篇 foster ian
  • 31 篇 prateek verma
  • 30 篇 pareek piyush ku...
  • 27 篇 zhang kun
  • 27 篇 piyush kumar par...
  • 25 篇 guizani mohsen
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 verma prateek
  • 22 篇 wasserman larry
  • 21 篇 chard kyle
  • 21 篇 müller klaus-rob...
  • 19 篇 huerta e.a.
  • 19 篇 xing eric p.
  • 19 篇 balakrishnan siv...
  • 18 篇 ravikumar pradee...
  • 18 篇 samek wojciech
  • 17 篇 montavon grégoir...
  • 17 篇 carneiro gustavo

语言

  • 3,244 篇 英文
  • 291 篇 其他
  • 3 篇 中文
检索条件"机构=Department of Data Science and Machine Learning Computer Science"
3540 条 记 录,以下是3451-3460 订阅
排序:
BiTAM: Bilingual topic AdMixture models for word alignment  21
BiTAM: Bilingual topic AdMixture models for word alignment
收藏 引用
21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, COLING/ACL 2006
作者: Zhao, Bing Xing, Eric P. Language Technologies Institute School of Computer Science Carnegie Mellon University Machine Learning Department School of Computer Science Carnegie Mellon University
We propose a novel bilingual topical admixture (BiTAM) formalism for word alignment in statistical machine translation. Under this formalism, the parallel sentence-pairs within a document-pair are assumed to constitut... 详细信息
来源: 评论
Scale-free paradigm in yeast genetic regulatory network inferred from microarray data
Scale-free paradigm in yeast genetic regulatory network infe...
收藏 引用
AISB'06: Adaptation in Artificial and Biological Systems
作者: Kontos, Kevin Bontempi, Gianluca ULB Machine Learning Group Computer Science Department Université Libre de Bruxelles 1050 Brussels Belgium
A major challenge of computational biology is the inference of genetic regulatory networks and the identification of their topology from DNA microarray data. Recent results show that scale-free networks play an import... 详细信息
来源: 评论
KFOIL: learning simple relational kernels
KFOIL: Learning simple relational kernels
收藏 引用
21st National Conference on Artificial Intelligence and the 18th Innovative Applications of Artificial Intelligence Conference, AAAI-06/IAAI-06
作者: Landwehr, Niels Passerini, Andrea De Raedt, Luc Frasconi, Paolo Machine Learning Lab Department of Computer Science Albert-Ludwigs Universität Freiburg Germany Machine Learning and Neural Networks Group Dipartimento di Sistemi e Informatica Università degli Studi di Firenze Florence Italy
A novel and simple combination of inductive logic programming with kernel methods is presented. The kFOIL algorithm integrates the well-known inductive logic programming system FOIL with kernel methods. The feature sp... 详细信息
来源: 评论
Accelerated training of conditional random fields with stochastic gradient methods  06
Accelerated training of conditional random fields with stoch...
收藏 引用
23rd International Conference on machine learning, ICML 2006
作者: Vishwanathan, S.V.N. Schraudolph, Nicol N. Schmidt, Mark W. Murphy, Kevin P. Statistical Machine Learning National ICT Australia Locked Bag 8001 Canberra ACT 2601 Australia Department of Computer Science University of British Columbia Canada
We apply Stochastic Meta-Descent (SMD), a stochastic gradient optimization method with gain vector adaptation, to the training of Conditional Random Fields (CRFs). On several large data sets, the resulting optimizer c... 详细信息
来源: 评论
Model-based sequential organization in cochannel speech
Model-based sequential organization in cochannel speech
收藏 引用
作者: Shao, Yang Wang, Deliang IEEE Department of Computer Science and Engineering Center for Cognitive Science Ohio State University Columbus OH 43210-1277 United States Computer Science and Engineering Ohio State University Columbus Department of Computer Science and Engineering Center for Cognitive Science Ohio State University Columbus IEEE Computational Intelligence Society Neural Networks Technical Committee Governing Board of the International Neural Network Society IEEE Signal Processing Society Machine Learning for Signal Processing Technical Committee
A human listener has the ability to follow a speaker's voice while others are speaking simultaneously;in particular, the listener can organize the time-frequency energy of the same speaker across time into a singl... 详细信息
来源: 评论
learning user preferences for sets of objects  06
Learning user preferences for sets of objects
收藏 引用
ICML 2006: 23rd International Conference on machine learning
作者: DesJardins, Marie Eaton, Eric Wagstaff, Kiri L. University of Maryland Baltimore County Computer Science and Electrical Engineering Department 1000 Hilltop Circle Baltimore MD 21250 United States Machine Learning and Instrument Autonomy Group Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena CA 91109 United States
Most work on preference learning has focused on pairwise preferences or rankings over individual items. In this paper, we present a method for learning preferences over sets of items. Our learning method takes as inpu... 详细信息
来源: 评论
A NEW DEFINITION OF REDUCTION IN ROUGH SETS
A NEW DEFINITION OF REDUCTION IN ROUGH SETS
收藏 引用
2006 International Conference on machine learning and Cybernetics(IEEE第五届机器学习与控制论坛)
作者: XIANG-HONG LI SHI-XIN ZHAO NA CHEN QUN-FENG ZHANG Department of Mathematics Shijiazhuang Railway Institute Shijiazhuang City Hebei Province China Department of Computer Science Shijiazhuang Railway Institute Shijiazhuang City Hebei Province C Machine Learning Center School of Mathematics and Computer Science Hebei University Hebei Provinc
This paper proposes a new definition of reduction in rough sets, which follows naturally from the concepts of the degree of similarity and the degree of inconsistency. The new definition is compared to the classical d... 详细信息
来源: 评论
Hyperparameter learning for graph based semi-supervised learning algorithms  06
Hyperparameter learning for graph based semi-supervised lear...
收藏 引用
Proceedings of the 20th International Conference on Neural Information Processing Systems
作者: Xinhua Zhang Wee Sun Lee Statistical Machine Learning Program National ICT Australia Canberra Australia and CSL RSISE ANU Canberra Australia Department of Computer Science National University of Singapore Singapore
Semi-supervised learning algorithms have been successfully applied in many applications with scarce labeled data, by utilizing the unlabeled data. One important category is graph based semi-supervised learning algorit...
来源: 评论
High-dimensional graphical model selection using ℓ1-regularized logistic regression  06
High-dimensional graphical model selection using ℓ1-regular...
收藏 引用
Proceedings of the 20th International Conference on Neural Information Processing Systems
作者: Martin J. Wainwright Pradeep Ravikumar John D. Lafferty Department of Statistics Department of EECS Univ. of California Berkeley Berkeley CA Machine Learning Dept. Carnegie Mellon Univ. Pittsburgh PA Computer Science Dept. Machine Learning Dept. Carnegie Mellon Univ. Pittsburgh PA
We focus on the problem of estimating the graph structure associated with a discrete Markov random field. We describe a method based on ℓ1-regularized logistic regression, in which the neighborhood of any given node i... 详细信息
来源: 评论
Fuzzy Matrix Computation for Fuzzy Information System to Reduce Attributes
Fuzzy Matrix Computation for Fuzzy Information System to Red...
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Su-yun Zhao Eric C. C. Tsang Xi-zhao Wang De-gang Chen Daniel S. Yeung Department of computing Hong Kong Polytechnic University Hong Kong China Machine Learning Center Faculty of Mathematics and Computer Science Hebei University Baoding China Department of Mathematics and Physics North China Electric Power University Beijing China
Recently, many methods based on fuzzy rough sets are proposed to reduce fuzzy attributes. The common characteristic of these methods is that all of them are based on fuzzy equivalence relation. In other words, the und... 详细信息
来源: 评论