咨询与建议

限定检索结果

文献类型

  • 1,918 篇 会议
  • 1,611 篇 期刊文献
  • 11 册 图书

馆藏范围

  • 3,540 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,171 篇 工学
    • 1,667 篇 计算机科学与技术...
    • 1,431 篇 软件工程
    • 439 篇 信息与通信工程
    • 406 篇 生物工程
    • 350 篇 控制科学与工程
    • 303 篇 生物医学工程(可授...
    • 227 篇 光学工程
    • 212 篇 电气工程
    • 155 篇 电子科学与技术(可...
    • 107 篇 化学工程与技术
    • 103 篇 安全科学与工程
    • 100 篇 机械工程
    • 93 篇 网络空间安全
    • 89 篇 仪器科学与技术
    • 61 篇 动力工程及工程热...
  • 1,445 篇 理学
    • 810 篇 数学
    • 457 篇 生物学
    • 398 篇 统计学(可授理学、...
    • 323 篇 物理学
    • 168 篇 系统科学
    • 147 篇 化学
  • 612 篇 管理学
    • 339 篇 管理科学与工程(可...
    • 299 篇 图书情报与档案管...
    • 174 篇 工商管理
  • 259 篇 医学
    • 212 篇 临床医学
    • 199 篇 基础医学(可授医学...
    • 119 篇 药学(可授医学、理...
    • 117 篇 公共卫生与预防医...
  • 114 篇 法学
    • 108 篇 社会学
  • 76 篇 经济学
    • 76 篇 应用经济学
  • 54 篇 农学
  • 38 篇 教育学
  • 16 篇 文学
  • 5 篇 军事学
  • 4 篇 艺术学
  • 3 篇 哲学
  • 2 篇 历史学

主题

  • 211 篇 machine learning
  • 174 篇 accuracy
  • 158 篇 deep learning
  • 98 篇 training
  • 91 篇 real-time system...
  • 85 篇 convolutional ne...
  • 81 篇 predictive model...
  • 70 篇 feature extracti...
  • 63 篇 computational mo...
  • 62 篇 optimization
  • 60 篇 forecasting
  • 59 篇 artificial intel...
  • 57 篇 data models
  • 56 篇 medical services
  • 55 篇 reinforcement le...
  • 51 篇 support vector m...
  • 50 篇 internet of thin...
  • 48 篇 machine learning...
  • 44 篇 data mining
  • 43 篇 semantics

机构

  • 122 篇 machine learning...
  • 60 篇 machine learning...
  • 55 篇 machine learning...
  • 46 篇 department of st...
  • 35 篇 machine learning...
  • 30 篇 machine learning...
  • 30 篇 department of ar...
  • 30 篇 nitte meenakshi ...
  • 28 篇 data science and...
  • 24 篇 munich center fo...
  • 22 篇 department of co...
  • 22 篇 center for data ...
  • 20 篇 department of ar...
  • 19 篇 department of ph...
  • 19 篇 machine learning...
  • 19 篇 department of co...
  • 19 篇 department of co...
  • 19 篇 center for machi...
  • 19 篇 munich center fo...
  • 19 篇 australian insti...

作者

  • 61 篇 ramdas aaditya
  • 35 篇 foster ian
  • 31 篇 prateek verma
  • 30 篇 pareek piyush ku...
  • 27 篇 zhang kun
  • 27 篇 piyush kumar par...
  • 25 篇 guizani mohsen
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 verma prateek
  • 22 篇 wasserman larry
  • 21 篇 chard kyle
  • 21 篇 müller klaus-rob...
  • 19 篇 huerta e.a.
  • 19 篇 xing eric p.
  • 19 篇 balakrishnan siv...
  • 18 篇 ravikumar pradee...
  • 18 篇 samek wojciech
  • 17 篇 montavon grégoir...
  • 17 篇 carneiro gustavo

语言

  • 3,244 篇 英文
  • 291 篇 其他
  • 3 篇 中文
检索条件"机构=Department of Data Science and Machine Learning Computer Science"
3540 条 记 录,以下是3481-3490 订阅
排序:
Sparse greedy minimax probability machine classification
Sparse greedy minimax probability machine classification
收藏 引用
17th Annual Conference on Neural Information Processing Systems, NIPS 2003
作者: Strohmann, Thomas R. Belitski, Andrei Grudic, Gregory Z. DeCoste, Dennis Department of Computer Science University of Colorado Boulder United States NASA Jet Propulsion Laboratory Machine Learning Systems Group United States
The Minimax Probability machine Classification (MPMC) framework [Lanckriet et al., 2002] builds classifiers by minimizing the maximum probability of misclassification, and gives direct estimates of the probabilistic a... 详细信息
来源: 评论
Laplace propagation
Laplace propagation
收藏 引用
17th Annual Conference on Neural Information Processing Systems, NIPS 2003
作者: Smola, Alex J. Vishwanathan, S.V.N. Eskin, Eleazar Machine Learning Group National ICT Australia ANU Canberra ACT 0200 Australia Department of Computer Science Hebrew University Jerusalem Jerusalem 91904 Israel
We present a novel method for approximate inference in Bayesian models and regularized risk functionals. It is based on the propagation of mean and variance derived from the Laplace approximation of conditional probab... 详细信息
来源: 评论
An initial analysis of parametric sensitivity to Fuzzy Extension Matrix
An initial analysis of parametric sensitivity to Fuzzy Exten...
收藏 引用
Proceedings of 2004 International Conference on machine learning and Cybernetics
作者: Wang, Jing-Hong Wang, Xi-Zhao Computer Department of Teaching Hebei Normal University Shijiazhuang 050091 China Machine Learning Center Fac. of Math. and Computer Science Hebei University Baoding 071002 China
Fuzzy Extension Matrix induction is an extraction technique of fuzzy rules, which can be used in handling ambiguous classification problems related to human's thought and sense. The entire process of building heur... 详细信息
来源: 评论
A comparison between decision trees and extension matrixes
A comparison between decision trees and extension matrixes
收藏 引用
Proceedings of 2004 International Conference on machine learning and Cybernetics
作者: Dong, Ai-Tang Wang, Jing-Hong Computer Department of Teaching Hebei Normal University Shijiazhuang 050091 China Machine Learning Center Fac. of Math. and Computer Science Hebei University Baoding 071002 China
Decision trees and extension matrixes are two methodologies for (fuzzy) rule generation. This paper gives an initial study on the comparison between the two methodologies. Their computational complexity and the qualit... 详细信息
来源: 评论
Kernels and distances for structured data
Kernels and distances for structured data
收藏 引用
作者: Gärtner, Thomas Lloyd, John W. Flach, Peter A. Fraunhofer Inst. Autonome I.S. Germany Department of Computer Science University of Bristol United Kingdom Department of Computer Science III University Of Bonn Germany Res. Sch. of Info. Sci./Engineering Australian National University Machine Learning Department of Computer Science University of Bristol United Kingdom
This paper brings together two strands of machine learning of increasing importance: kernel methods and highly structured data. We propose a general method for constructing a kernel following the syntactic structure o... 详细信息
来源: 评论
An experimental study on relationship between pruning algorithms and selection of parameters in fuzzy decision tree generation
An experimental study on relationship between pruning algori...
收藏 引用
Proceedings of 2004 International Conference on machine learning and Cybernetics
作者: You, Zi-Ying Ji, Hong-Yan Machine Learning Center Fac. of Math. and Computer Science Hebei University Baoding 071002 Hebei China Department of Mathematics Hebei Engineering University Handan 056038 Hebei China
It is important to study the relationship between pruning algorithms and the selection of parameters in fuzzy decision tree generation for controlling the tree size. This paper selects a pruning algorithm and a method... 详细信息
来源: 评论
Gaussian process classification for segmenting and annotating sequences
Gaussian process classification for segmenting and annotatin...
收藏 引用
Proceedings, Twenty-First International Conference on machine learning, ICML 2004
作者: Altun, Yasemin Hofmann, Thomas Smola, Alexander J. Department of Computer Science Brown University Providence RI 02912 United States Department of Computer Science Brown University United States Max Planck Inst. for Biol. Cybernet. 72076 Tübingen Germany Machine Learning Group RSISE Canberra ACT 0200 Australia
Many real-world classification tasks involve the prediction of multiple, inter-dependent class labels. A prototypical case of this sort deals with prediction of a sequence of labels for a sequence of observations. Suc... 详细信息
来源: 评论
A rough set-based CBR approach for feature and document reduction in text categorization
A rough set-based CBR approach for feature and document redu...
收藏 引用
Proceedings of 2004 International Conference on machine learning and Cybernetics
作者: Li, Yan Shiu, Simon Chi-Keung Pal, Sankar Kumar Liu, James Nga-Kwok Department of Computing Hong Kong Polytechnic University Kowloon Hong Kong Machine Intelligence Unit Indian Statistical Institute Kolkata 700 035 India Machine Learning Center Fac. of Math. and Computer Science Hebei University Baoding 071002 China
In this paper, a novel approach of rough set-based case-based reasoning (CBR) approach is proposed to tackle the task of text categorization (TC). The initial work of integrating both feature and document reduction/se... 详细信息
来源: 评论
Bellman goes relational
Bellman goes relational
收藏 引用
Proceedings, Twenty-First International Conference on machine learning, ICML 2004
作者: Kersting, Kristian Van Otterlo, Martijn De Raedt, Luc University of Freiburg Machine Learning Lab. Georges-Koehler-Allee 079 79110 Freiburg Germany Twente University Department of Computer Science TKI P.O. Box 217 7500 AE Enschede Netherlands
Motivated by the interest in relational reinforcement learning, we introduce a novel relational Bellman update operator called REBEL. It employs a constraint logic programming language to compactly represent Markov de... 详细信息
来源: 评论
A study of the difference between partial derivative and stochastic neural network sensitivity analysis for applications in supervised pattern classification problems
A study of the difference between partial derivative and sto...
收藏 引用
Proceedings of 2004 International Conference on machine learning and Cybernetics
作者: Ng, Wing W.Y. Yeung, Daniel S. Wang, Xi-Zhao Cloete, Ian Department of Computing Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong Machine Learning Center Fac. of Math. and Computer Science Hebei University Baoding 071002 China School of Information Technology International University Bruchsal Germany
This paper provides a brief development roadmap of the neural network sensitivity analysis, from 1960's to now on. The two main streams of the sensitivity measures: partial derivative and stochastic sensitivity me... 详细信息
来源: 评论