咨询与建议

限定检索结果

文献类型

  • 1,946 篇 会议
  • 1,618 篇 期刊文献
  • 11 册 图书

馆藏范围

  • 3,575 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2,196 篇 工学
    • 1,683 篇 计算机科学与技术...
    • 1,435 篇 软件工程
    • 442 篇 信息与通信工程
    • 410 篇 生物工程
    • 362 篇 控制科学与工程
    • 308 篇 生物医学工程(可授...
    • 228 篇 光学工程
    • 218 篇 电气工程
    • 155 篇 电子科学与技术(可...
    • 107 篇 化学工程与技术
    • 104 篇 安全科学与工程
    • 101 篇 机械工程
    • 95 篇 网络空间安全
    • 89 篇 仪器科学与技术
    • 61 篇 动力工程及工程热...
  • 1,461 篇 理学
    • 816 篇 数学
    • 460 篇 生物学
    • 400 篇 统计学(可授理学、...
    • 330 篇 物理学
    • 170 篇 系统科学
    • 151 篇 化学
  • 617 篇 管理学
    • 342 篇 管理科学与工程(可...
    • 302 篇 图书情报与档案管...
    • 178 篇 工商管理
  • 267 篇 医学
    • 220 篇 临床医学
    • 204 篇 基础医学(可授医学...
    • 122 篇 公共卫生与预防医...
    • 119 篇 药学(可授医学、理...
  • 113 篇 法学
    • 107 篇 社会学
  • 75 篇 经济学
    • 75 篇 应用经济学
  • 54 篇 农学
  • 39 篇 教育学
  • 16 篇 文学
  • 5 篇 军事学
  • 4 篇 艺术学
  • 3 篇 哲学
  • 2 篇 历史学

主题

  • 214 篇 machine learning
  • 179 篇 accuracy
  • 159 篇 deep learning
  • 98 篇 training
  • 92 篇 real-time system...
  • 86 篇 convolutional ne...
  • 82 篇 predictive model...
  • 70 篇 feature extracti...
  • 64 篇 computational mo...
  • 62 篇 optimization
  • 60 篇 forecasting
  • 58 篇 artificial intel...
  • 57 篇 reinforcement le...
  • 57 篇 medical services
  • 57 篇 data models
  • 51 篇 support vector m...
  • 51 篇 machine learning...
  • 50 篇 internet of thin...
  • 44 篇 data mining
  • 43 篇 semantics

机构

  • 123 篇 machine learning...
  • 60 篇 machine learning...
  • 55 篇 machine learning...
  • 46 篇 department of st...
  • 36 篇 machine learning...
  • 30 篇 machine learning...
  • 30 篇 department of ar...
  • 30 篇 nitte meenakshi ...
  • 27 篇 data science and...
  • 23 篇 center for data ...
  • 23 篇 munich center fo...
  • 22 篇 department of co...
  • 20 篇 center for machi...
  • 20 篇 australian insti...
  • 20 篇 department of ar...
  • 19 篇 department of ph...
  • 19 篇 machine learning...
  • 19 篇 department of co...
  • 19 篇 department of co...
  • 19 篇 munich center fo...

作者

  • 62 篇 ramdas aaditya
  • 35 篇 foster ian
  • 31 篇 prateek verma
  • 30 篇 pareek piyush ku...
  • 27 篇 zhang kun
  • 27 篇 piyush kumar par...
  • 26 篇 guizani mohsen
  • 24 篇 pontil massimili...
  • 23 篇 eklund anders
  • 22 篇 verma prateek
  • 22 篇 wasserman larry
  • 21 篇 chard kyle
  • 20 篇 müller klaus-rob...
  • 19 篇 huerta e.a.
  • 19 篇 xing eric p.
  • 19 篇 balakrishnan siv...
  • 18 篇 ravikumar pradee...
  • 18 篇 samek wojciech
  • 17 篇 carneiro gustavo
  • 17 篇 mohsen guizani

语言

  • 3,127 篇 英文
  • 443 篇 其他
  • 3 篇 中文
检索条件"机构=Department of Data Science and Machine Learning Computer Science"
3575 条 记 录,以下是3511-3520 订阅
Continuous-attributes reduction in incomplete information system based on rough sets technique
Continuous-attributes reduction in incomplete information sy...
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Tsang Su-Yun Zhao Yeung Lee Department of Computing Hong Kong Polytechnic University Kowloon Hong Kong China Machine Learning Center Faculty of Mathematics and Computer Science Hebei University Baoding China
Many methods based on rough sets to deal with incomplete information system have been proposed in recent years. However, they are only suitable for the nominal datasets. So far only a few methods based on rough sets t... 详细信息
来源: 评论
Localized generalization error and its application to RBFNN training
Localized generalization error and its application to RBFNN ...
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Ng Yeung De-Feng Wang Tsang Xi-Zhao Wang Department of Computing Hong Kong Polytechnic University Kowloon Hong Kong China Machine Learning Center Faculty of Mathematics and Computer Science Hebei University Baoding China
The generalization error bounds for the entire input space found by current error models using the number of effective parameters of a classifier and the number of training samples are usually very loose. But classifi... 详细信息
来源: 评论
Finding reducts for ordinal decision tables
Finding reducts for ordinal decision tables
收藏 引用
International Conference on machine learning and Cybernetics (ICMLC)
作者: Lee Xi-Zhao Wang Jin-Feng Wang Department of Computing Hong Kong Polytechnic University Kowloon Hong Kong China Machine Learning Center Faculty of Mathematics and Computer Science Hebei University Baoding China
Since its introduction, rough set theory has demonstrated its usefulness in many applications where imprecise and inconsistent information is involved. An important area of its application is in the induction of decis... 详细信息
来源: 评论
An improved algorithm for maximum-likelihood based approach for a multitarget tracking problem
An improved algorithm for maximum-likelihood based approach ...
收藏 引用
IEEE International Symposium on Circuits and Systems (ISCAS)
作者: Liang Chen Qiang Hua H.K. Kwan Computer Science Department University of Northern British Columbia Prince George BC Canada Machine Learning Center Hebei University Baoding China Department of Electrical and Computer Engineering University of Windsor Windsor ONT Canada
It has been shown that the optimal solution for the matching problem in multi-target tracking, when both estimated measuring bearing data and actual measuring data are known, can be found from among N different matchi... 详细信息
来源: 评论
Hierarchical Bayesian networks: An approach to classification and learning for structured data
收藏 引用
3rd Hellenic Conference on Artificial Intelligence, SETN 2004
作者: Gyftodimos, Elias Flach, Peter A. Machine Learning Group Department of Computer Science University of Bristol United Kingdom
Bayesian Networks are one of the most popular formalisms for reasoning under uncertainty. Hierarchical Bayesian Networks (HBNs) are an extension of Bayesian Networks that are able to deal with structured domains, usin... 详细信息
来源: 评论
Sparse greedy minimax probability machine classification
Sparse greedy minimax probability machine classification
收藏 引用
17th Annual Conference on Neural Information Processing Systems, NIPS 2003
作者: Strohmann, Thomas R. Belitski, Andrei Grudic, Gregory Z. DeCoste, Dennis Department of Computer Science University of Colorado Boulder United States NASA Jet Propulsion Laboratory Machine Learning Systems Group United States
The Minimax Probability machine Classification (MPMC) framework [Lanckriet et al., 2002] builds classifiers by minimizing the maximum probability of misclassification, and gives direct estimates of the probabilistic a... 详细信息
来源: 评论
Laplace propagation
Laplace propagation
收藏 引用
17th Annual Conference on Neural Information Processing Systems, NIPS 2003
作者: Smola, Alex J. Vishwanathan, S.V.N. Eskin, Eleazar Machine Learning Group National ICT Australia ANU Canberra ACT 0200 Australia Department of Computer Science Hebrew University Jerusalem Jerusalem 91904 Israel
We present a novel method for approximate inference in Bayesian models and regularized risk functionals. It is based on the propagation of mean and variance derived from the Laplace approximation of conditional probab... 详细信息
来源: 评论
An initial analysis of parametric sensitivity to Fuzzy Extension Matrix
An initial analysis of parametric sensitivity to Fuzzy Exten...
收藏 引用
Proceedings of 2004 International Conference on machine learning and Cybernetics
作者: Wang, Jing-Hong Wang, Xi-Zhao Computer Department of Teaching Hebei Normal University Shijiazhuang 050091 China Machine Learning Center Fac. of Math. and Computer Science Hebei University Baoding 071002 China
Fuzzy Extension Matrix induction is an extraction technique of fuzzy rules, which can be used in handling ambiguous classification problems related to human's thought and sense. The entire process of building heur... 详细信息
来源: 评论
A comparison between decision trees and extension matrixes
A comparison between decision trees and extension matrixes
收藏 引用
Proceedings of 2004 International Conference on machine learning and Cybernetics
作者: Dong, Ai-Tang Wang, Jing-Hong Computer Department of Teaching Hebei Normal University Shijiazhuang 050091 China Machine Learning Center Fac. of Math. and Computer Science Hebei University Baoding 071002 China
Decision trees and extension matrixes are two methodologies for (fuzzy) rule generation. This paper gives an initial study on the comparison between the two methodologies. Their computational complexity and the qualit... 详细信息
来源: 评论
Kernels and distances for structured data
Kernels and distances for structured data
收藏 引用
作者: Gärtner, Thomas Lloyd, John W. Flach, Peter A. Fraunhofer Inst. Autonome I.S. Germany Department of Computer Science University of Bristol United Kingdom Department of Computer Science III University Of Bonn Germany Res. Sch. of Info. Sci./Engineering Australian National University Machine Learning Department of Computer Science University of Bristol United Kingdom
This paper brings together two strands of machine learning of increasing importance: kernel methods and highly structured data. We propose a general method for constructing a kernel following the syntactic structure o... 详细信息
来源: 评论