This study considers the problem of generation expansion planning and transmission expansion planning (GTEP) from the profit point of view of generation and transmission companies. A new framework is proposed, that co...
详细信息
The integration of Artificial Itelligence (AI) and edge computing has sparked significant interest in edge inference services. In this paper, we consider delay-sensitive, differential accuracy inference services in a ...
详细信息
Precise diagnosis and treatment planning depend heavily on the segmentation and classification of brain tumors in medical pictures. The diagnostic and therapeutic challenges posed by brain tumors necessitate innovativ...
详细信息
Bilevel optimization has recently attracted growing interests due to its wide applications in modern machine learning problems. Although recent studies have characterized the convergence rate for several such popular ...
详细信息
Tip-enhanced Raman spectroscopy(TERS)imaging is a super-resolution imaging technique that features the merits of both surface-enhanced Raman spectroscopy(SERS)and scanning probe microscopy(SPM),such as the high chemic...
详细信息
Tip-enhanced Raman spectroscopy(TERS)imaging is a super-resolution imaging technique that features the merits of both surface-enhanced Raman spectroscopy(SERS)and scanning probe microscopy(SPM),such as the high chemical sensitivity from the former and the nanoscale spatial resolution from the *** advantages make TERS an essential nanospectroscopic characterization technique for chemical analysis,materials science,bio-sensing,*** probes,the most critical factor determining the TERS imaging quality,are expected to provide a highly confined electromagnetic hotspot with a minimized scattering background for the generation of Raman signals with high spatial *** two decades of development,numerous probe design concepts have been proposed and *** review provides a comprehensive overview of the state-of-the-art TERS probe designs,from the working mechanism to the practical *** start with reviewing the recent development of TERS configurations and the corresponding working mechanisms,including the SPM platforms,optical excitation/collection techniques,and probe preparation *** then review the emerging novel TERS probe designs,including the remote-excitation probes,the waveguide-based nanofocusing probes,the metal-coated nanofocusing probes,the nanowire-assisted selective-coupling probes,and the tapered metal-insulator-metal *** discussion focuses on a few critical aspects,including the surface-plasmon-polariton(SPP)hotspot excitation technique,conversion efficiency,working frequency,and *** the end,we review the latest TERS applications and give a perspective on the future of TERS.
Forecasting electricity demand is an essential part of the smart grid to ensure a stable and reliable power grid. With the increasing integration of renewable energy resources into the grid, forecasting the demand for...
详细信息
Forecasting electricity demand is an essential part of the smart grid to ensure a stable and reliable power grid. With the increasing integration of renewable energy resources into the grid, forecasting the demand for electricity is critical at all levels, from the distribution to the household. Most existing forecasting methods, however, can be considered black-box models as a result of deep digitalization enablers, such as deep neural networks, which remain difficult to interpret by humans. Moreover, capture of the inter-dependencies among variables presents a significant challenge for multivariate time series forecasting. In this paper we propose eXplainable Causal Graph Neural Network (X-CGNN) for multivariate electricity demand forecasting that overcomes these limitations. As part of this method, we have intrinsic and global explanations based on causal inferences as well as local explanations based on post-hoc analyses. We have performed extensive validation on two real-world electricity demand datasets from both the household and distribution levels to demonstrate that our proposed method achieves state-of-the-art performance.
This paper modifies the training of artificial neural networks in order to derive weights the binary expression of which is composed of a limited set of sub-expressions only, placed in specified positions. The benefit...
详细信息
Accurate channel estimation is required for various multiple input multiple output (MIMO) implementations in the next-generation wireless communication systems. Recently, Artificial Intelligence (AI) techniques have b...
详细信息
The Internet of Things (IoT) stands as a revolutionary leap in digital connectivity, envisioning a future network connecting billions of devices, seamlessly. Amidst the myriad benefits, there arises an intricate web o...
详细信息
The Internet of Things (IoT) stands as a revolutionary leap in digital connectivity, envisioning a future network connecting billions of devices, seamlessly. Amidst the myriad benefits, there arises an intricate web of challenges, prominently centered around potential threats and data security implications. Recent cryptography techniques, such as DNA-based cryptography, 3D chaos-based cryptography, and optical cryptography, face challenges including large encryption times, high energy consumption, and suboptimal rather than optimal performance. Particularly, the burden of long encryption cycles strains the energy resources of typical low-power and compact IoT devices. These challenges render the devices vulnerable to unauthorized breaches, despite large storage capacities. The hallmark of the IoT ecosystem, characterized by its low-power compact devices, is the burgeoning volume of data they generate. This escalating data influx, while necessitating expansive storage, remains vulnerable to unauthorized access and breaches. Historically, encryption algorithms, with their multifaceted architectures, have been the bulwark against such intrusions. However, their inherently-complex nature, entailing multiple encryption cycles, strains the limited energy reserves of typical IoT devices. In response to this intricate dilemma, we present a hybrid lightweight encryption strategy. Our algorithm innovatively leverages both one-dimensional (1D) and two-dimensional (2D) chaotic key generators. Furthermore, it amalgamates a classical encryption philosophy, harmonizing the strengths of Feistel and substitution-permutation networks. The centerpiece of our strategy is achieving effective encryption in merely three rounds, tailored expressly for compressed Three-Dimensional Video (3DV) frames, ensuring their unwavering integrity. Our workflow commences with the H.264/MVC compression algorithm, setting the stage for the subsequent encryption phase. Through rigorous MATLAB simulations,
This work presents a blockchain-based communication architecture for multi-agent smart manufacturing systems, enhanced with federated learning to improve security, data privacy, and scalability. Comparative evaluation...
详细信息
暂无评论