Although conventional control systems are simple and widely used, they may not be effective for complex and uncertain systems. This study proposes a Hermite broad-learning recurrent neural network (HBRNN) with a wide ...
详细信息
The variability of the output power of distributed renewable energy sources(DRESs)that originate from the fastchanging climatic conditions can negatively affect the grid ***,grid operators have incorporated ramp-rate ...
详细信息
The variability of the output power of distributed renewable energy sources(DRESs)that originate from the fastchanging climatic conditions can negatively affect the grid ***,grid operators have incorporated ramp-rate limitations(RRLs)for the injected DRES power in the grid *** the DRES penetration levels increase,the mitigation of high-power ramps is no longer considered as a system support function but rather an ancillary service(AS).Energy storage systems(ESSs)coordinated by RR control algorithms are often applied to mitigate these power ***,no unified definition of active power ramps,which is essential to treat the RRL as AS,currently *** paper assesses the various definitions for ramp-rate RR and proposes RRL method control for a central battery ESS(BESS)in distribution systems(DSs).The ultimate objective is to restrain high-power ramps at the distribution transformer level so that RRL can be traded as AS to the upstream transmission system(TS).The proposed control is based on the direct control of theΔP/Δt,which means that the control parameters are directly correlated with the RR requirements included in the grid *** addition,a novel method for restoring the state of charge(So C)within a specific range following a high ramp-up/down event is ***,a parametric method for estimating the sizing of central BESSs(BESS sizing for short)is *** BESS sizing is determined by considering the RR requirements,the DRES units,and the load mix of the examined *** BESS sizing is directly related to the constant RR achieved using the proposed ***,the proposed methodologies are validated through simulations in MATLAB/Simulink and laboratory tests in a commercially available BESS.
This paper presents a chopper-stabilized three-stage operational amplifier (OpAmp) with a unity gain bandwidth of 69 MHz and an input referred noise density of 3 nV√Hz. The proposed design achieves a stable unity gai...
详细信息
Medical experts are utilizing neuroimaging and clinical assessments to enhance the early identification of Parkinson's disease. The current research initiative offers ways to identify Parkinson's disease using...
详细信息
Medical experts are utilizing neuroimaging and clinical assessments to enhance the early identification of Parkinson's disease. The current research initiative offers ways to identify Parkinson's disease using machine learning and transfer learning. To carry out this, we extracted 7500 MRI images from 2022 and 2023 and 12 clinical assessment records from 2010 to 2023 from the well-known Parkinson's Progression Marker Initiative (PPMI) database. Then, we applied machine and transfer learning approaches using clinical assessment records and MRI images, respectively. To identify Parkinson's Disease (PD) using samples from clinical assessments, four distinct resampling techniques were employed. Subsequently, three machine learning models were applied to train on these resample records, and the recall score was analyzed. A hybrid of SMOTE and ENN proved to be the most effective approach for handling all of the imbalanced data, according to the recall study. Later, four different feature selection methods were used to find the top 10 features using these new samples. Lastly, we trained and validated the model using nine machine-learning algorithms. We also used explainable AI techniques like LIME and SHAP to interpret clinical assessment records. The extra tree classifier outperformed the others in terms of accuracy, reaching 98.44% using the tree-based feature selection technique. In addition to examining clinical assessment samples, this study investigated Parkinson's disease using neuroimaging data. In pursuit of this objective, four pre-trained architectures were employed to analyze MRI images through two distinct approaches. The first approach involved utilizing the convolutional layer while replacing the remaining two layers with a customized Artificial Neural Network (ANN). Subsequently, training and evaluation are performed using our MRI samples, followed by analyzing significant weights using a LIME interpretable explainer. The second approach employs an improvis
Developing manufacturing methods for flexible electronics will enable and improve the large-scale production of flexible, spatially efficient, and lightweight devices. Laser sintering is a promising postprocessing met...
详细信息
Neurons in a Spiking Neural Network (SNN) communicate using electrical pulses or spikes. They fire or trigger conditionally, and learning is sensitive to such triggers' timing and duration. The Leaky Integrate and...
详细信息
This paper introduces Deep Convolutional Generative Adversarial Networks (DCGAN) as a potential solution for wireless systems aiming to enhance the Block Error Rate (BLER). The DCGAN under consideration consists of a ...
详细信息
Traffic on highways has increased significantly in the past few years. Consequently, this has caused delays for the drivers in reaching their final destination and increased the highway's congestion level. Many op...
详细信息
This work proposes a distributed estimation and control approach in which a team of aerial agents equipped with radio jamming devices collaborate in order to intercept and concurrently track-and-jam a malicious target...
详细信息
In this paper we consider the motion planning problem in an n-dimensional Euclidean space, n ≥q 2, containing finitely many obstacles with boundaries possessing a smooth structure. Obstacle boundaries are assumed to ...
详细信息
暂无评论