Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memris...
详细信息
Advancements in neuromorphic computing have given an impetus to the development of systems with adaptive behavior,dynamic responses,and energy efficiency *** charge-based or emerging memory technologies such as memristors have been developed to emulate synaptic plasticity,replicating the key functionality of neurons—integrating diverse presynaptic inputs to fire electrical impulses—has remained *** this study,we developed reconfigurable metal-oxide-semiconductor capacitors(MOSCaps)based on hafnium diselenide(HfSe2).The proposed devices exhibit(1)optoelectronic synaptic features and perform separate stimulus-associated learning,indicating considerable adaptive neuron emulation,(2)dual light-enabled charge-trapping and memcapacitive behavior within the same MOSCap device,whose threshold voltage and capacitance vary based on the light intensity across the visible spectrum,(3)memcapacitor volatility tuning based on the biasing conditions,enabling the transition from volatile light sensing to non-volatile optical data *** reconfigurability and multifunctionality of MOSCap were used to integrate the device into a leaky integrate-and-fire neuron model within a spiking neural network to dynamically adjust firing patterns based on light stimuli and detect exoplanets through variations in light intensity.
作者:
Butola, RajatLi, YimingKola, Sekhar ReddyNational Yang Ming Chiao Tung University
Parallel and Scientific Computing Laboratory Electrical Engineering and Computer Science International Graduate Program Hsinchu300093 Taiwan Institute of Pioneer Semiconductor Innovation
The Institute of Artificial Intelligence Innovation National Yang Ming Chiao Tung University Parallel and Scientific Computing Laboratory Electrical Engineering and Computer Science International Graduate Program The Institute of Communications Engineering the Institute of Biomedical Engineering Department of Electronics and Electrical Engineering Hsinchu300093 Taiwan
In this work, a dynamic weighting-artificial neural network (DW-ANN) methodology is presented for quick and automated compact model (CM) generation. It takes advantage of both TCAD simulations for high accuracy and SP...
详细信息
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,...
详细信息
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,area,and time efficiencies of neuromorphic computing *** study is primarily focused on the development of a single sensing-storage-processing node based on a two-terminal solution-processable MoS2 metal-oxide-semiconductor(MOS)charge-trapping memory structure—the basic structure for charge-coupled devices(CCD)—and showing its suitability for in-memory light sensing and artificial visual *** memory window of the device increased from 2.8 V to more than 6V when the device was irradiated with optical lights of different wavelengths during the program ***,the charge retention capability of the device at a high temperature(100 ℃)was enhanced from 36 to 64%when exposed to a light wavelength of 400 *** larger shift in the threshold voltage with an increasing operating voltage confirmed that more charges were trapped at the Al_(2)O_(3)/MoS_(2) interface and in the MoS_(2) layer.A small convolutional neural network was proposed to measure the optical sensing and electricalprogramming abilities of the *** array simulation received optical images transmitted using a blue light wavelength and performed inference computation to process and recognize the images with 91%*** study is a significant step toward the development of optoelectronic MOS memory devices for neuromorphic visual perception,adaptive parallel processing networks for in-memory light sensing,and smart CCD cameras with artificial visual perception capabilities.
As big data,Artificial Intelligence,and Vehicle-to-Everything(V2X)communication have advanced,Intelligent Transportation Systems(ITS)are being developed to enable efficient and safe transportation *** Toll Collection(...
详细信息
As big data,Artificial Intelligence,and Vehicle-to-Everything(V2X)communication have advanced,Intelligent Transportation Systems(ITS)are being developed to enable efficient and safe transportation *** Toll Collection(ETC),which is one of the services included in ITS systems,is an automated system that allows vehicles to pass through toll plazas without stopping for manual *** ETC system is widely deployed on highways due to its contribution to stabilizing the overall traffic system *** ensure secure and efficient toll payments,designing a distributed model for sharing toll payment information among untrusted toll service providers is ***,the current ETC system operates under a centralized ***,both toll service providers and toll plazas know the toll usage history of *** raises concerns about revealing the entire driving routes and patterns of *** address these issues,blockchain technology,suitable for secure data management and data sharing in distributed systems,is being applied to the ETC *** enables efficient and transparent management of ETC ***,the public nature of blockchain poses a challenge where users’usage records are exposed to all *** tackle this,we propose a blockchain-based toll ticket model named AnonymousTollPass that considers the privacy of *** proposed model utilizes traceable ring signatures to provide unlinkability between tickets used by a vehicle and prevent the identity of the vehicle using the ticket from being identified among the ring members for the ***,malicious vehicles’identities can be traced when they attempt to reuse *** conducting simulations,we show the effectiveness of the proposed model and demonstrate that gas fees required for executing the proposed smart contracts are only 10%(when the ring size is 50)of the fees required in previous studies.
This work presents an accelerator that performs blind deblurring based on the dark channel prior. The alternating minimization algorithm is leveraged for latent image and blur kernel estimation. A 2-D Laplace equation...
详细信息
This study examines the impact of environmental, social, and governance (ESG) factors on economic investment from a statistical perspective, aiming to develop a tested investment strategy that capitalizes on the conne...
详细信息
The pace of development in the world of 5G communication systems has proven to be much more demanding than previous generations, with 5G-Advanced seemingly around the corner [1]. Extensive research is already underway...
The pace of development in the world of 5G communication systems has proven to be much more demanding than previous generations, with 5G-Advanced seemingly around the corner [1]. Extensive research is already underway to structure the next generation of wireless systems(i.e. 6G), which may potentially enable an unprecedented level of human–machine interaction [2].
Machine learning-based detection of false data injection attacks (FDIAs) in smart grids relies on labeled measurement data for training and testing. The majority of existing detectors are developed assuming that the a...
详细信息
Machine learning-based detection of false data injection attacks (FDIAs) in smart grids relies on labeled measurement data for training and testing. The majority of existing detectors are developed assuming that the adopted datasets for training have correct labeling information. However, such an assumption is not always valid as training data might include measurement samples that are incorrectly labeled as benign, namely, adversarial data poisoning samples, which have not been detected before. Neglecting such an aspect makes detectors susceptible to data poisoning. Our investigations revealed that detection rates (DRs) of existing detectors significantly deteriorate by up to 9-29% when subject to data poisoning in generalized and topology-specific settings. Thus, we propose a generalized graph neural network-based anomaly detector that is robust against FDIAs and data poisoning. It requires only benign datasets for training and employs an autoencoder with Chebyshev graph convolutional recurrent layers with attention mechanism to capture the spatial and temporal correlations within measurement data. The proposed convolutional recurrent graph autoencoder model is trained and tested on various topologies (from 14, 39, and 118-bus systems). Due to such factors, it yields stable generalized detection performance that is degraded by only 1.6-3.7% in DR against high levels of data poisoning and unseen FDIAs in unobserved topologies. Impact Statement-Artificial Intelligence (AI) systems are used in smart grids to detect cyberattacks. They can automatically detect malicious actions carried out bymalicious entities that falsifymeasurement data within power grids. Themajority of such systems are data-driven and rely on labeled data for model training and testing. However, datasets are not always correctly labeled since malicious entities might be carrying out cyberattacks without being detected, which leads to training on mislabeled datasets. Such actions might degrade the d
With the advent of generative artificial intelligence (AI), the scope of data analysis, prediction of performances, real-time feedback, etc. in learning analytics has widened. The purpose of this study is to explore t...
详细信息
Tip-enhanced Raman spectroscopy(TERS)imaging is a super-resolution imaging technique that features the merits of both surface-enhanced Raman spectroscopy(SERS)and scanning probe microscopy(SPM),such as the high chemic...
详细信息
Tip-enhanced Raman spectroscopy(TERS)imaging is a super-resolution imaging technique that features the merits of both surface-enhanced Raman spectroscopy(SERS)and scanning probe microscopy(SPM),such as the high chemical sensitivity from the former and the nanoscale spatial resolution from the *** advantages make TERS an essential nanospectroscopic characterization technique for chemical analysis,materials science,bio-sensing,*** probes,the most critical factor determining the TERS imaging quality,are expected to provide a highly confined electromagnetic hotspot with a minimized scattering background for the generation of Raman signals with high spatial *** two decades of development,numerous probe design concepts have been proposed and *** review provides a comprehensive overview of the state-of-the-art TERS probe designs,from the working mechanism to the practical *** start with reviewing the recent development of TERS configurations and the corresponding working mechanisms,including the SPM platforms,optical excitation/collection techniques,and probe preparation *** then review the emerging novel TERS probe designs,including the remote-excitation probes,the waveguide-based nanofocusing probes,the metal-coated nanofocusing probes,the nanowire-assisted selective-coupling probes,and the tapered metal-insulator-metal *** discussion focuses on a few critical aspects,including the surface-plasmon-polariton(SPP)hotspot excitation technique,conversion efficiency,working frequency,and *** the end,we review the latest TERS applications and give a perspective on the future of TERS.
暂无评论