Battery Energy Storage Systems (BESS) are critical for addressing the intermittent nature of Distributed Energy Resources (DERs) in power distribution networks. By enabling real-time monitoring and remote control, Int...
详细信息
High penetration of renewable energy sources(RESs)induces sharply-fluctuating feeder power,leading to volt-age deviation in active distribution *** prevent voltage violations,multi-terminal soft open points(M-sOPs)hav...
详细信息
High penetration of renewable energy sources(RESs)induces sharply-fluctuating feeder power,leading to volt-age deviation in active distribution *** prevent voltage violations,multi-terminal soft open points(M-sOPs)have been integrated into the distribution systems to enhance voltage con-trol ***,the M-SOP voltage control recalculated in real time cannot adapt to the rapid fluctuations of photovol-taic(PV)power,fundamentally limiting the voltage controllabili-ty of *** address this issue,a full-model-free adaptive graph deep deterministic policy gradient(FAG-DDPG)model is proposed for M-SOP voltage ***,the attention-based adaptive graph convolutional network(AGCN)is lever-aged to extract the complex correlation features of nodal infor-mation to improve the policy learning ***,the AGCN-based surrogate model is trained to replace the power flow cal-culation to achieve model-free ***,the deep deterministic policy gradient(DDPG)algorithm allows FAG-DDPG model to learn an optimal control strategy of M-SOP by continuous interactions with the AGCN-based surrogate *** tests have been performed on modified IEEE 33-node,123-node,and a real 76-node distribution systems,which demonstrate the effectiveness and generalization ability of the proposed FAG-DDPGmodel.
AI and reinforcement learning (RL) have attracted great attention in the study of multiplayer systems over the past decade. Despite the advances, most of the studies are focused on synchronized decision-making to atta...
详细信息
Despite the effectiveness of vision-language supervised fine-tuning in enhancing the performance of vision large language models(VLLMs), existing visual instruction tuning datasets include the following limitations.(1...
详细信息
Despite the effectiveness of vision-language supervised fine-tuning in enhancing the performance of vision large language models(VLLMs), existing visual instruction tuning datasets include the following limitations.(1) Instruction annotation quality: despite existing VLLMs exhibiting strong performance,instructions generated by those advanced VLLMs may still suffer from inaccuracies, such as hallucinations.(2) Instructions and image diversity: the limited range of instruction types and the lack of diversity in image data may impact the model's ability to generate diversified and closer to real-world scenarios outputs. To address these challenges, we construct a high-quality, diverse visual instruction tuning dataset MMInstruct,which consists of 973k instructions from 24 domains. There are four instruction types: judgment, multiplechoice, long visual question answering, and short visual question answering. To construct MMInstruct, we propose an instruction generation data engine that leverages GPT-4V, GPT-3.5, and manual correction. Our instruction generation engine enables semi-automatic, low-cost, and multi-domain instruction generation at 1/6 the cost of manual construction. Through extensive experiment validation and ablation experiments,we demonstrate that MMInstruct could significantly improve the performance of VLLMs, e.g., the model fine-tuning on MMInstruct achieves new state-of-the-art performance on 10 out of 12 benchmarks. The code and data shall be available at https://***/yuecao0119/MMInstruct.
As big data,Artificial Intelligence,and Vehicle-to-Everything(V2X)communication have advanced,Intelligent Transportation Systems(ITS)are being developed to enable efficient and safe transportation *** Toll Collection(...
详细信息
As big data,Artificial Intelligence,and Vehicle-to-Everything(V2X)communication have advanced,Intelligent Transportation Systems(ITS)are being developed to enable efficient and safe transportation *** Toll Collection(ETC),which is one of the services included in ITS systems,is an automated system that allows vehicles to pass through toll plazas without stopping for manual *** ETC system is widely deployed on highways due to its contribution to stabilizing the overall traffic system *** ensure secure and efficient toll payments,designing a distributed model for sharing toll payment information among untrusted toll service providers is ***,the current ETC system operates under a centralized ***,both toll service providers and toll plazas know the toll usage history of *** raises concerns about revealing the entire driving routes and patterns of *** address these issues,blockchain technology,suitable for secure data management and data sharing in distributed systems,is being applied to the ETC *** enables efficient and transparent management of ETC ***,the public nature of blockchain poses a challenge where users’usage records are exposed to all *** tackle this,we propose a blockchain-based toll ticket model named AnonymousTollPass that considers the privacy of *** proposed model utilizes traceable ring signatures to provide unlinkability between tickets used by a vehicle and prevent the identity of the vehicle using the ticket from being identified among the ring members for the ***,malicious vehicles’identities can be traced when they attempt to reuse *** conducting simulations,we show the effectiveness of the proposed model and demonstrate that gas fees required for executing the proposed smart contracts are only 10%(when the ring size is 50)of the fees required in previous studies.
作者:
Butola, RajatLi, YimingKola, Sekhar ReddyNational Yang Ming Chiao Tung University
Parallel and Scientific Computing Laboratory Electrical Engineering and Computer Science International Graduate Program Hsinchu300093 Taiwan Institute of Pioneer Semiconductor Innovation
The Institute of Artificial Intelligence Innovation National Yang Ming Chiao Tung University Parallel and Scientific Computing Laboratory Electrical Engineering and Computer Science International Graduate Program The Institute of Communications Engineering the Institute of Biomedical Engineering Department of Electronics and Electrical Engineering Hsinchu300093 Taiwan
In this work, a dynamic weighting-artificial neural network (DW-ANN) methodology is presented for quick and automated compact model (CM) generation. It takes advantage of both TCAD simulations for high accuracy and SP...
详细信息
Cloud Computing (CC) is widely adopted in sectors like education, healthcare, and banking due to its scalability and cost-effectiveness. However, its internet-based nature exposes it to cyber threats, necessitating ad...
详细信息
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management *** has become a promi...
详细信息
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management *** has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and ***,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial *** examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong ***,the security of AI models for the digital communication signals identification is the premise of its efficient and credible *** this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial *** we present more detailed adversarial indicators to evaluate attack and defense ***,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.
CsSnI3 is widely studied as an environmentally friendly Pb-free perovskite material for optoelectronic device applications. To further improve material and device performance, it is important to understand the surface...
详细信息
CsSnI3 is widely studied as an environmentally friendly Pb-free perovskite material for optoelectronic device applications. To further improve material and device performance, it is important to understand the surface structures of CsSnI3. We generate surface structures with various stoichiometries, perform density functional theory calculations to create phase diagrams of the CsSnI3 (001), (110), and (100) surfaces, and determine the most stable surfaces under a wide range of Cs, Sn, and I chemical potentials. Under I-rich conditions, surfaces with Cs vacancies are stable, which lead to partially occupied surface states above the valence band maximum. Under I-poor conditions, we find the stoichiometric (100) surface to be stable under a wide region of the phase diagram, which does not have any surface states and can contribute to long charge-carrier lifetimes. Consequently, the I-poor (Sn-rich) conditions will be more beneficial to improve the device performance.
This article presents an in-depth exploration of the acoustofluidic capabilities of guided flexural waves(GFWs)generated by a membrane acoustic waveguide actuator(MAWA).By harnessing the potential of GFWs,cavity-agnos...
详细信息
This article presents an in-depth exploration of the acoustofluidic capabilities of guided flexural waves(GFWs)generated by a membrane acoustic waveguide actuator(MAWA).By harnessing the potential of GFWs,cavity-agnostic advanced particle manipulation functions are achieved,unlocking new avenues for microfluidic systems and lab-on-a-chip *** localized acoustofluidic effects of GFWs arising from the evanescent nature of the acoustic fields they induce inside a liquid medium are numerically investigated to highlight their unique and promising *** traditional acoustofluidic technologies,the GFWs propagating on the MAWA’s membrane waveguide allow for cavity-agnostic particle manipulation,irrespective of the resonant properties of the fluidic ***,the acoustofluidic functions enabled by the device depend on the flexural mode populating the active region of the membrane *** demonstrations using two types of particles include in-sessile-droplet particle transport,mixing,and spatial separation based on particle diameter,along with streaming-induced counter-flow virtual channel generation in microfluidic PDMS *** experiments emphasize the versatility and potential applications of the MAWA as a microfluidic platform targeted at lab-on-a-chip development and showcase the MAWA’s compatibility with existing microfluidic systems.
暂无评论