High penetration of renewable energy sources(RESs)induces sharply-fluctuating feeder power,leading to volt-age deviation in active distribution *** prevent voltage violations,multi-terminal soft open points(M-sOPs)hav...
详细信息
High penetration of renewable energy sources(RESs)induces sharply-fluctuating feeder power,leading to volt-age deviation in active distribution *** prevent voltage violations,multi-terminal soft open points(M-sOPs)have been integrated into the distribution systems to enhance voltage con-trol ***,the M-SOP voltage control recalculated in real time cannot adapt to the rapid fluctuations of photovol-taic(PV)power,fundamentally limiting the voltage controllabili-ty of *** address this issue,a full-model-free adaptive graph deep deterministic policy gradient(FAG-DDPG)model is proposed for M-SOP voltage ***,the attention-based adaptive graph convolutional network(AGCN)is lever-aged to extract the complex correlation features of nodal infor-mation to improve the policy learning ***,the AGCN-based surrogate model is trained to replace the power flow cal-culation to achieve model-free ***,the deep deterministic policy gradient(DDPG)algorithm allows FAG-DDPG model to learn an optimal control strategy of M-SOP by continuous interactions with the AGCN-based surrogate *** tests have been performed on modified IEEE 33-node,123-node,and a real 76-node distribution systems,which demonstrate the effectiveness and generalization ability of the proposed FAG-DDPGmodel.
Under the advancements of science and technology at present, artificial intelligence has become widely applied in daily life. Hence, deep learning has attracted much attention in recent years and has been widely used ...
详细信息
This paper proposes a Human Intelligence (HI)-based Computational Intelligence (CI) and Artificial Intelligence (AI) Fuzzy Markup Language (CI&AI-FML) Metaverse as an educational environment for co-learning of stu...
详细信息
One of themost prominent research areas in information technology is the Internet of Things (IoT) as its applications are widely used, such as structural monitoring, health care management systems, agriculture and bat...
详细信息
One of themost prominent research areas in information technology is the Internet of Things (IoT) as its applications are widely used, such as structural monitoring, health care management systems, agriculture and battlefield management, and so on. Due to its self-organizing network and simple installation of the network, the researchers have been attracted to pursue research in the various fields of IoTs. However, a huge amount of work has been addressed on various problems confronted by IoT. The nodes densely deploy over critical environments and those are operated on tiny batteries. Moreover, the replacement of dead batteries in the nodes is almost impractical. Therefore, the problem of energy preservation and maximization of IoT networks has become the most prominent research area. However, numerous state-of-The-Art algorithms have addressed this issue. Thus, it has become necessary to gather the information and send it to the base station in an optimized method to maximize the network. Therefore, in this article, we propose a novel quantum-informed ant colony optimization (ACO) routing algorithm with the efficient encoding scheme of cluster head selection and derivation of information heuristic factors. The algorithm has been tested by simulation for various network scenarios. The simulation results of the proposed algorithm show its efficacy over a few existing evolutionary algorithms using various performance metrics, such as residual energy of the network, network lifetime, and the number of live IoT nodes. Impact Statement-Toward IoT-based applications, here we presented the Quantum-inspired ACO clustering algorithm for network lifetime. IoT nodes in the clustering phase choose theirCH through the distance between cluster member IoT nodes and the residual energy. Thus, CH selection reduces the energy consumption of member IoT nodes. Therefore, our significant contributions are summarized as follows. i. Developing Quantum-informed ACO clustered routing algor
The work proposes a methodology for five different classes of ECG signals. The methodology utilises moving average filter and discrete wavelet transformation for the remove of baseline wandering and powerline interfer...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease ...
详细信息
This paper explores the global spread of the COVID-19 virus since 2019, impacting 219 countries worldwide. Despite the absence of a definitive cure, the utilization of artificial intelligence (AI) methods for disease diagnosis has demonstrated commendable effectiveness in promptly diagnosing patients and curbing infection transmission. The study introduces a deep learning-based model tailored for COVID-19 detection, leveraging three prevalent medical imaging modalities: computed tomography (CT), chest X-ray (CXR), and Ultrasound. Various deep Transfer Learning Convolutional Neural Network-based (CNN) models have undergone assessment for each imaging modality. For each imaging modality, this study has selected the two most accurate models based on evaluation metrics such as accuracy and loss. Additionally, efforts have been made to prune unnecessary weights from these models to obtain more efficient and sparse models. By fusing these pruned models, enhanced performance has been achieved. The models have undergone rigorous training and testing using publicly available real-world medical datasets, focusing on classifying these datasets into three distinct categories: Normal, COVID-19 Pneumonia, and non-COVID-19 Pneumonia. The primary objective is to develop an optimized and swift model through strategies like Transfer Learning, Ensemble Learning, and reducing network complexity, making it easier for storage and transfer. The results of the trained network on test data exhibit promising outcomes. The accuracy of these models on the CT scan, X-ray, and ultrasound datasets stands at 99.4%, 98.9%, and 99.3%, respectively. Moreover, these models’ sizes have been substantially reduced and optimized by 51.93%, 38.00%, and 69.07%, respectively. This study proposes a computer-aided-coronavirus-detection system based on three standard medical imaging techniques. The intention is to assist radiologists in accurately and swiftly diagnosing the disease, especially during the screen
For a company, it is important to know which products to launch to the market that may get the maximal profit. To achieve this goal, companies not only need to consider these products' features, but also need to a...
详细信息
Semi-supervised learning (SSL) aims to reduce reliance on labeled data. Achieving high performance often requires more complex algorithms, therefore, generic SSL algorithms are less effective when it comes to image cl...
详细信息
We explore the use of caching both at the network edge and within User Equipment(UE)to alleviate traffic load of wireless *** develop a joint cache placement and delivery policy that maximizes the Quality of Service(Q...
详细信息
We explore the use of caching both at the network edge and within User Equipment(UE)to alleviate traffic load of wireless *** develop a joint cache placement and delivery policy that maximizes the Quality of Service(QoS)while simultaneously minimizing backhaul load and UE power consumption,in the presence of an unknown time-variant file *** file requests in a time slot being affected by download success in the previous slot,the caching system becomes a non-stationary Partial Observable Markov Decision Process(POMDP).We solve the problem in a deep reinforcement learning framework based on the Advantageous Actor-Critic(A2C)algorithm,comparing Feed Forward Neural Networks(FFNN)with a Long Short-Term Memory(LSTM)approach specifically designed to exploit the correlation of file popularity distribution across time *** results show that using LSTM-based A2C outperforms FFNN-based A2C in terms of sample efficiency and optimality,demonstrating superior performance for the non-stationary POMDP *** caching at the UEs,we provide a distributed algorithm that reaches the objectives dictated by the agent controlling the network,with minimum energy consumption at the UEs,and minimum communication overhead.
Thunderstorm detection based on the Atmospheric Electric Field(AEF)has evolved from time-domain models to space-domain *** is especially important to evaluate and determine the particularly Weather Attribute(WA),which...
详细信息
Thunderstorm detection based on the Atmospheric Electric Field(AEF)has evolved from time-domain models to space-domain *** is especially important to evaluate and determine the particularly Weather Attribute(WA),which is directly related to the detection reliability and *** this paper,a strategy is proposed to integrate three currently competitive WA's evaluation ***,a conventional evaluation method based on AEF statistical indicators is *** evaluation approaches include competing AEF-based predicted value intervals,and AEF classification based on fuzzy *** AEF attributes contribute to a more accurate AEF classification to different *** resulting dynamic weighting applied to these attributes improves the classification *** evaluation method is applied to evaluate the WA of a particular AEF,to obtain the corresponding evaluation *** integration in the proposed strategy takes the form of a score *** cumulative score levels correspond to different final WA *** imaging is performed to visualize thunderstorm activities using those AEFs already evaluated to exhibit thunderstorm *** results confirm that the proposed strategy effectively and reliably images thunderstorms,with a 100%accuracy of WA *** is the first study to design an integrated thunderstorm detection strategy from a new perspective of WA evaluation,which provides promising solutions for a more reliable and flexible thunderstorm detection.
暂无评论