Named Data Networking(NDN)has emerged as a promising communication paradigm,emphasizing content-centric access rather than location-based *** model offers several advantages for Internet of Healthcare Things(IoHT)envi...
详细信息
Named Data Networking(NDN)has emerged as a promising communication paradigm,emphasizing content-centric access rather than location-based *** model offers several advantages for Internet of Healthcare Things(IoHT)environments,including efficient content distribution,built-in security,and natural support for mobility and ***,existing NDN-based IoHT systems face inefficiencies in their forwarding strategy,where identical Interest packets are forwarded across multiple nodes,causing broadcast storms,increased collisions,higher energy consumption,and *** issues negatively impact healthcare system performance,particularly for individuals with disabilities and chronic diseases requiring continuous *** address these challenges,we propose a Smart and Energy-Aware Forwarding(SEF)strategy based on reinforcement learning for NDN-based *** SEF strategy leverages the geographical distance and energy levels of neighboring nodes,enabling devices to make more informed forwarding decisions and optimize next-hop *** approach reduces broadcast storms,optimizes overall energy consumption,and extends network *** system model,which targets smart hospitals and monitoring systems for individuals with disabilities,was examined in relation to the proposed *** SEF strategy was then implemented in the NS-3 simulation environment to assess its performance in healthcare *** demonstrated that SEF significantly enhanced NDN-based IoHT ***,it reduced energy consumption by up to 27.11%,82.23%,and 84.44%,decreased retrieval time by 20.23%,48.12%,and 51.65%,and achieved satisfaction rates that were approximately 0.69 higher than those of other strategies,even in more densely populated *** forwarding strategy is anticipated to substantially improve the quality and efficiency of NDN-based IoHT systems.
Integrating iterative learning control (ILC) with feedback control systems progressively enhances tracking performance by learning from data, such as control inputs and tracked errors accumulated over multiple trials....
详细信息
Medical image encryption is a mandatory process in various healthcare, Internet of Medical Things (IoMT) and cloud services. This paper provides a robust cryptosystem based on a 3D chaotic map for the medical image en...
详细信息
In this paper, a new block diagonal chaotic model (BDC) is investigated due to higher necessity of advanced secure data transmission method in wireless medium and considerable limitation on computational storage space...
详细信息
Fruit safety is a critical component of the global economy, particularly within the agricultural sector. There has been a recent surge in the incidence of diseases affecting fruits, leading to economic setbacks in agr...
详细信息
Regression testing of software systems is an important and critical activity yet expensive and resource-intensive. An approach to enhance its efficiency is Regression Test Selection (RTS), which selectively re-execute...
详细信息
Regression testing of software systems is an important and critical activity yet expensive and resource-intensive. An approach to enhance its efficiency is Regression Test Selection (RTS), which selectively re-executes a subset of relevant tests that are impacted by code modifications. Previous studies on static and dynamic RTS for Java software have shown that selecting tests at the class level is more effective than using finer granularities like methods or statements. Nevertheless, RTS at the package level, which is a coarser granularity than class level, has not been thoroughly investigated or evaluated for Java projects. To address this gap, we propose PKRTS, a static package-level RTS approach that utilizes the structural dependencies of the software system under test to construct a package-level dependency graph. PKRTS analyzes dependencies in the graph and identifies relevant tests that can reach modified packages, i.e., packages containing altered classes. In contrast to conventional static RTS techniques, PKRTS implicitly considers dynamic dependencies, such as Java reflection and virtual method calls, among classes belonging to the same package by treating all those classes as a single cohesive node in the dependency graph. We evaluated PKRTS on 885 revisions of 9 open-source Java projects, with its performance compared to Ekstazi, a state-of-the-art dynamic class-level approach, and STARTS, a state-of-the-art static class-level approach. We used Ekstazi as the baseline to measure the safety and precision violations of PKRTS and STARTS. The results indicated that PKRTS outperformed static class-level RTS in terms of safety violation, which measures the extent to which relevant test cases are missed. PKRTS showed an average safety violation of 2.29% compared to 5.94% safety violation of STARTS. Despite this, PKRTS demonstrated lower precision violation and lower reduction in test suite size than class-level RTS, as it selects higher number of irrelevant te
Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer ***,the rising energy consumption in cloud center...
详细信息
Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure,thereby revolutionizing computer ***,the rising energy consumption in cloud centers poses a significant challenge,especially with the escalating energy *** paper tackles this issue by introducing efficient solutions for data placement and node management,with a clear emphasis on the crucial role of the Internet of Things(IoT)throughout the research *** IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around data *** sensors continuously monitor vital parameters such as energy usage and temperature,thereby providing a comprehensive dataset for *** data generated by the IoT is seamlessly integrated into the Hybrid TCN-GRU-NBeat(NGT)model,enabling a dynamic and accurate representation of the current state of the data center *** the incorporation of the Seagull Optimization Algorithm(SOA),the NGT model optimizes storage migration strategies based on the latest information provided by IoT *** model is trained using 80%of the available dataset and subsequently tested on the remaining 20%.The results demonstrate the effectiveness of the proposed approach,with a Mean Squared Error(MSE)of 5.33%and a Mean Absolute Error(MAE)of 2.83%,accurately estimating power prices and leading to an average reduction of 23.88%in power ***,the integration of IoT data significantly enhances the accuracy of the NGT model,outperforming benchmark algorithms such as DenseNet,Support Vector Machine(SVM),Decision Trees,and *** NGT model achieves an impressive accuracy rate of 97.9%,surpassing the rates of 87%,83%,80%,and 79%,respectively,for the benchmark *** findings underscore the effectiveness of the proposed method in optimizing energy efficiency and enhancing the predictive
In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communicati...
详细信息
In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communication through open networks is insecure and has many vulnerabilities, making it susceptible to unauthorized access and misuse. Encryption models are used to secure medical data from unauthorized access. In this work, we propose a bit-level encryption model having three phases: preprocessing, confusion, and diffusion. This model is designed for different types of medical data including patient information, clinical data, medical signals, and images of different modalities. Also, the proposed model is effectively implemented for grayscale and color images with varying aspect ratios. Preprocessing has been applied based on the type of medical data. A random permutation has been used to scramble the data values to remove the correlation, and multilevel chaotic maps are fused with the cyclic redundancy check method. A circular shift is used in the diffusion phase to increase randomness and security, providing protection against potential attacks. The CRC method is further used at the receiver side for error detection. The performance efficiency of the proposed encryption model is proved in terms of histogram analysis, information entropy, correlation analysis, signal-to-noise ratio, peak signal-to-noise ratio, number of pixels changing rate, and unified average changing intensity. The proposed bit-level encryption model therefore achieves information entropy values ranging from 7.9669 to 8.000, which is close to the desired value of 8. Correlation coefficient values of the encrypted data approach to zero or are negative, indicating minimal correlation in encrypted data. Resistance against differential attacks is demonstrated by NPCR and UACI values exceeding 0.9960 and 0.3340, respectively. The key space of the proposed model is 1096, which is substantially mor
Ultradense low-Earth orbit (LEO) satellite-terrestrial network (ULSN) has evolved as a new paradigm to provide ubiquitous and high-capacity communications in next generation wireless networks. However, the direct LEO ...
详细信息
The detrimental effects of atmospheric haze frequently plague outdoor imagery. This phenomenon arises from the scattering of light by minute particles within the ambient environment surrounding the scene to be im...
详细信息
暂无评论