Moving around in their surroundings is challenging for elderly people and people with visual impairments. The majority of functional sticks in use today are not intelligent and lack an innate ability to recognize obst...
详细信息
Person re-identification (ReID) aims to identify pedestrian images with the same identity across non-overlapping camera views. Intra-camera supervised person re-identification (ICS-ReID) is a new paradigm that trains ...
详细信息
Unusual crowd analysis is an important problem in surveillance video due to their features cannot be extracted efficiently on the crowd scenes. To overcome this challenge, this paper introduced the appearance and moti...
详细信息
Kidney disease (KD) is a gradually increasing global health concern. It is a chronic illness linked to higher rates of morbidity and mortality, a higher risk of cardiovascular disease and numerous other illnesses, and...
详细信息
In the field of machining, product quality must meet customer specifications. In general, surface roughness is an essential indicator of machining quality. Low surface roughness correlates with increased fatigue stren...
详细信息
In the field of machining, product quality must meet customer specifications. In general, surface roughness is an essential indicator of machining quality. Low surface roughness correlates with increased fatigue strength and corrosion resistance. However, the main factor that affects surface roughness is the selection of the machining parameters. When different parameters are combined, the resulting machining quality varies. Therefore, to achieve the desired machining quality, appropriate machining parameters must be selected. In this study, an ultrasonic-assisted machining system (UAMS) was designed to help users determine the machining parameters and machine SiC materials. To establish a prediction model for surface roughness, a novel network mapping fusion (NMF) convolutional neuro-fuzzy network (CNFN) model was used in the designed UAMS. The differential evolution algorithm was then used to search for optimized machining parameters. To explain the prediction model, which can help analyze the factors that have the greatest influence on surface roughness, a Shapley additive explanations method is proposed. The proposed NMF–CNFN model was more accurate than were the other deep learning models and exhibited a MAPE of 1.98%. When optimized machining parameters were selected, the desired surface roughness was obtained, thereby confirming the effectiveness and accuracy of the proposed UAMS. Moreover, the proposed model was implemented in a field-programmable gate array (FPGA) to reduce its power consumption and increase its computational performance. Experimental results indicated that the computational speed of the FPGA was 99.64%and 99.16%higher than those of the CPU and GPU, respectively. IEEE
Erasable itemset mining is one of the most well-known methods in data mining for optimizing limited materials. After mining erasable itemsets, the manager can rearrange the production plan effectively. However, in rea...
详细信息
The holomorphic embedding method(HEM)stands as a mathematical technique renowned for its favorable convergence properties when resolving algebraic systems involving complex *** key idea behind the HEM is to convert th...
详细信息
The holomorphic embedding method(HEM)stands as a mathematical technique renowned for its favorable convergence properties when resolving algebraic systems involving complex *** key idea behind the HEM is to convert the task of solving complex algebraic equations into a series expansion involving one or multiple embedded complex *** transformation empowers the utilization of complex analysis tools to tackle the original problem *** the 2010s,the HEM has been applied to steady-state and dynamic problems in power systems and has shown superior convergence and robustness compared to traditional numerical *** paper provides a comprehensive review on the diverse applications of the HEM and its variants reported by the literature in the past *** paper discusses both the strengths and limitations of these HEMs and provides guidelines for practical *** also outlines the challenges and potential directions for future research in this field.
In recent years, many vessels have utilized automatic identification systems (AISs) to process marine positioning and navigation;the system employs GPS to position and transmits signals through ultrahigh-frequency wir...
详细信息
Image Captioning is an emergent topic of research in the domain of artificial intelligence(AI).It utilizes an integration of computer Vision(CV)and Natural Language Processing(NLP)for generating the image *** use in s...
详细信息
Image Captioning is an emergent topic of research in the domain of artificial intelligence(AI).It utilizes an integration of computer Vision(CV)and Natural Language Processing(NLP)for generating the image *** use in several application areas namely recommendation in editing applications,utilization in virtual assistance,*** development of NLP and deep learning(DL)modelsfind useful to derive a bridge among the visual details and textual *** this view,this paper introduces an Oppositional Harris Hawks Optimization with Deep Learning based Image Captioning(OHHO-DLIC)*** OHHO-DLIC technique involves the design of distinct levels of ***,the feature extraction of the images is carried out by the use of EfficientNet ***,the image captioning is performed by bidirectional long short term memory(BiLSTM)model,comprising encoder as well as *** last,the oppositional Harris Hawks optimization(OHHO)based hyperparameter tuning process is performed for effectively adjusting the hyperparameter of the EfficientNet and BiLSTM *** experimental analysis of the OHHO-DLIC technique is carried out on the Flickr 8k Dataset and a comprehensive comparative analysis highlighted the better performance over the recent approaches.
In the recent era of technology, the internet of things (IoT) plays a tremendous role in enhancing the quality of human life through smart devices and sensing the real-world environment. IoT aims to interconnect anyth...
详细信息
暂无评论