False Data Injection Attacks (FDIA) pose a significant threat to the stability of smart grids. Traditional Bad Data Detection (BDD) algorithms, deployed to remove low-quality data, can easily be bypassed by these atta...
详细信息
False Data Injection Attacks (FDIA) pose a significant threat to the stability of smart grids. Traditional Bad Data Detection (BDD) algorithms, deployed to remove low-quality data, can easily be bypassed by these attacks which require minimal knowledge about the parameters of the power bus systems. This makes it essential to develop defence approaches that are generic and scalable to all types of power systems. Deep learning algorithms provide state-of-the-art detection for FDIA while requiring no knowledge about system parameters. However, there are very few works in the literature that evaluate these models for FDIA detection at the level of an individual node in the power system. In this paper, we compare several recent deep learning-based model that proven their high performance and accuracy in detecting the exact location of the attack node, which are convolutional neural networks (CNN), Long Short-Term Memory (LSTM), attention-based bidirectional LSTM, and hybrid models. We, then, compare their performance with baseline multi-layer perceptron (MLP)., All the models are evaluated on IEEE-14 and IEEE-118 bus systems in terms of row accuracy (RACC), computational time, and memory space required for training the deep learning model. Each model was further investigated through a manual grid search to determine the optimal architecture of the deep learning model, including the number of layers and neurons in each layer. Based on the results, CNN model exhibited consistently high performance in very short training time. LSTM achieved the second highest accuracy;however, it had required an averagely higher training time. The attention-based LSTM model achieved a high accuracy of 94.53 during hyperparameter tuning, while the CNN model achieved a moderately lower accuracy with only one-fourth of the training time. Finally, the performance of each model was quantified on different variants of the dataset—which varied in their l2-norm. Based on the results, LSTM, CNN obta
We propose a new method called the Metropolis-adjusted Mirror Langevin algorithm for approximate sampling from distributions whose support is a compact and convex set. This algorithm adds an accept-reject filter to th...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking pe...
详细信息
This study introduces a data-driven approach for state and output feedback control addressing the constrained output regulation problem in unknown linear discrete-time systems. Our method ensures effective tracking performance while satisfying the state and input constraints, even when system matrices are not available. We first establish a sufficient condition necessary for the existence of a solution pair to the regulator equation and propose a data-based approach to obtain the feedforward and feedback control gains for state feedback control using linear programming. Furthermore, we design a refined Luenberger observer to accurately estimate the system state, while keeping the estimation error within a predefined set. By combining output regulation theory, we develop an output feedback control strategy. The stability of the closed-loop system is rigorously proved to be asymptotically stable by further leveraging the concept of λ-contractive sets.
The ensemble is a technique that strategically combines basic models to achieve better accuracy ***,combination methods,and selection topology are the main factors determining ensemble ***,it is a challenging task to ...
详细信息
The ensemble is a technique that strategically combines basic models to achieve better accuracy ***,combination methods,and selection topology are the main factors determining ensemble ***,it is a challenging task to design an efficient ensemble *** though numerous paradigms have been proposed to classify ensemble schemes,there is still much room for *** paper proposes a general framework for creating ensembles in the context of ***,the ensemble framework consists of four stages:objectives,data preparing,model training,and model *** is comprehensive to design diverse *** proposed ensemble approach can be used for a wide variety of machine learning *** validate our approach on real-world *** experimental results show the efficiency of the proposed approach.
Great progress has been made toward accurate face detection in recent ***,the heavy model and expensive computation costs make it difficult to deploy many detectors on mobile and embedded devices where model size and ...
详细信息
Great progress has been made toward accurate face detection in recent ***,the heavy model and expensive computation costs make it difficult to deploy many detectors on mobile and embedded devices where model size and latency are highly *** this paper,we present a millisecond-level anchor-free face detector,YuNet,which is specifically designed for edge *** are several key contributions in improving the efficiency-accuracy ***,we analyse the influential state-of-theart face detectors in recent years and summarize the rules to reduce the size of ***,a lightweight face detector,YuNet,is *** detector contains a tiny and efficient feature extraction backbone and a simplified pyramid feature fusion *** the best of our knowledge,YuNet has the best trade-off between accuracy and *** has only 75856 parameters and is less than 1/5 of other small-size *** addition,a training strategy is presented for the tiny face detector,and it can effectively train models with the same distribution of the training *** proposed YuNet achieves 81.1%mAP(single-scale)on the WIDER FACE validation hard track with a high inference efficiency(Intel i7-12700K:1.6ms per frame at 320×320).Because of its unique advantages,the repository for YuNet and its predecessors has been popular at GitHub and gained more than 11K stars at https://***/ShiqiYu/***:Face detection,object detection,computer version,lightweight,inference efficiency,anchor-free mechanism.
Pretrained language models leverage selfsupervised learning to use large amounts of unlabeled text for learning contextual representations of sequences. However, in the domain of medical conversations, the availabilit...
详细信息
This study investigates the application of deep learning,ensemble learning,metaheuristic optimization,and image processing techniques for detecting lung and colon cancers,aiming to enhance treatment efficacy and impro...
详细信息
This study investigates the application of deep learning,ensemble learning,metaheuristic optimization,and image processing techniques for detecting lung and colon cancers,aiming to enhance treatment efficacy and improve survival *** introduce a metaheuristic-driven two-stage ensemble deep learning model for efficient lung/colon cancer *** diagnosis of lung and colon cancers is attempted using several unique indicators by different versions of deep Convolutional Neural Networks(CNNs)in feature extraction and model constructions,and utilizing the power of various Machine Learning(ML)algorithms for final ***,we consider different scenarios consisting of two-class colon cancer,three-class lung cancer,and fiveclass combined lung/colon cancer to conduct feature extraction using four *** extracted features are then integrated to create a comprehensive feature *** the next step,the optimization of the feature selection is conducted using a metaheuristic algorithm based on the Electric Eel Foraging Optimization(EEFO).This optimized feature subset is subsequently employed in various ML algorithms to determine the most effective ones through a rigorous evaluation *** top-performing algorithms are refined using the High-Performance Filter(HPF)and integrated into an ensemble learning framework employing weighted *** findings indicate that the proposed ensemble learning model significantly surpasses existing methods in classification accuracy across all datasets,achieving accuracies of 99.85%for the two-class,98.70%for the three-class,and 98.96%for the five-class datasets.
Combining optical and electronic systems could enable information processing that is a million times faster than existing gigahertz technology. Imagine leveraging nature’s fastest processes to power the electronics i...
详细信息
Combining optical and electronic systems could enable information processing that is a million times faster than existing gigahertz technology. Imagine leveraging nature’s fastest processes to power the electronics in semiconductor chips, quantum sensors and quantum computers. Such transformative speed would not only greatly improve the performance of technology, but unveil new vistas for fundamental science as well.
With the rise of cloud computing, multi-user scenarios have become a common setting for data sharing nowadays. The conservative security notion might not be sufficient for such a data sharing model. As a response to t...
详细信息
Population growth in cities results in a demand for parking lots from an increasing number of automobiles, which frequently contributes to the global problem of traffic congestion. This study presents the smart parkin...
详细信息
暂无评论