Permanent magnet brushless DC motors (PMBLDCM) are at the core of most water-pumping systems, which are increasingly moving towards the integration of solar photovoltaic power in domestic, agricultural and industrial ...
详细信息
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management *** has become a promi...
详细信息
As modern communication technology advances apace,the digital communication signals identification plays an important role in cognitive radio networks,the communication monitoring and management *** has become a promising solution to this problem due to its powerful modeling capability,which has become a consensus in academia and ***,because of the data-dependence and inexplicability of AI models and the openness of electromagnetic space,the physical layer digital communication signals identification model is threatened by adversarial *** examples pose a common threat to AI models,where well-designed and slight perturbations added to input data can cause wrong ***,the security of AI models for the digital communication signals identification is the premise of its efficient and credible *** this paper,we first launch adversarial attacks on the end-to-end AI model for automatic modulation classifi-cation,and then we explain and present three defense mechanisms based on the adversarial *** we present more detailed adversarial indicators to evaluate attack and defense ***,a demonstration verification system is developed to show that the adversarial attack is a real threat to the digital communication signals identification model,which should be paid more attention in future research.
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various *** methodologies have emerged as pivotal components...
详细信息
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various *** methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing *** enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target *** defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed *** response to this challenge,a novel UNet Residual Attention Network(URA-Net)is *** paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump *** essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual *** intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze *** validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image *** the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 *** noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yieldi
The component aging has become a significant concern worldwide,and the frequent failures pose a serious threat to the reliability of modern power *** light of this issue,this paper presents a power system reliability ...
详细信息
The component aging has become a significant concern worldwide,and the frequent failures pose a serious threat to the reliability of modern power *** light of this issue,this paper presents a power system reliability evaluation method based on sequential Monte Carlo simulation(SMCS)to quantify system reliability considering multiple failure modes of ***,a three-state component reliability model is established to explicitly describe the state transition process of the component subject to both aging failure and random failure *** this model,the impact of each failure mode is decoupled and characterized as the combination of two state duration variables,which are separately modeled using specific probability ***,SMCS is used to integrate the three-state component reliability model for state transition sequence generation and system reliability ***,various reliability metrics,including the probability of load curtailment(PLC),expected frequency of load curtailment(EFLC),and expected energy not supplied(EENS),can be *** ensure the applicability of the proposed method,Hash table grouping and the maximum feasible load level judgment techniques are jointly adopted to enhance its computational *** studies are conducted on different aging scenarios to illustrate and validate the effectiveness and practicality of the proposed method.
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
Fruit safety is a critical component of the global economy, particularly within the agricultural sector. There has been a recent surge in the incidence of diseases affecting fruits, leading to economic setbacks in agr...
详细信息
Amidst rising distributed generation and its potential role in grid management, this article presents a new realistic approach to determine the operational space and flexibility potential of an unbalanced active distr...
详细信息
In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communicati...
详细信息
In telemedicine applications, it is crucial to ensure the authentication, confidentiality, and privacy of medical data due to its sensitive nature and the importance of the patient information it contains. Communication through open networks is insecure and has many vulnerabilities, making it susceptible to unauthorized access and misuse. Encryption models are used to secure medical data from unauthorized access. In this work, we propose a bit-level encryption model having three phases: preprocessing, confusion, and diffusion. This model is designed for different types of medical data including patient information, clinical data, medical signals, and images of different modalities. Also, the proposed model is effectively implemented for grayscale and color images with varying aspect ratios. Preprocessing has been applied based on the type of medical data. A random permutation has been used to scramble the data values to remove the correlation, and multilevel chaotic maps are fused with the cyclic redundancy check method. A circular shift is used in the diffusion phase to increase randomness and security, providing protection against potential attacks. The CRC method is further used at the receiver side for error detection. The performance efficiency of the proposed encryption model is proved in terms of histogram analysis, information entropy, correlation analysis, signal-to-noise ratio, peak signal-to-noise ratio, number of pixels changing rate, and unified average changing intensity. The proposed bit-level encryption model therefore achieves information entropy values ranging from 7.9669 to 8.000, which is close to the desired value of 8. Correlation coefficient values of the encrypted data approach to zero or are negative, indicating minimal correlation in encrypted data. Resistance against differential attacks is demonstrated by NPCR and UACI values exceeding 0.9960 and 0.3340, respectively. The key space of the proposed model is 1096, which is substantially mor
To accommodate the wide range of input voltages supplied by redundant batteries and ensure an adequate hold-up time for communication systems during utility power failures, power supplies used in 5 G base stations typ...
详细信息
The realization of brain-scale spiking neural networks (SNNs) is impeded by power constraints and low integration density. To address these challenges, multi-core SNNs are utilized to emulate numerous neurons with hig...
详细信息
The realization of brain-scale spiking neural networks (SNNs) is impeded by power constraints and low integration density. To address these challenges, multi-core SNNs are utilized to emulate numerous neurons with high energy efficiency, where spike packets are routed through a network-on-chip (NoC). However, the information can be lost in the NoC under high spike traffic conditions, leading to performance degradation. This work presents NEXUS, a 16-core SNN with a diamond-shaped NoC topology fabricated in 28-nm CMOS technology. It integrates 4096 leaky integrate-and-fire (LIF) neurons with 1M 4-bit synaptic weights, occupying an area of 2.16 mm2. The proposed NoC architecture is scalable to any network size, ensuring no data loss due to contending packets with a maximum routing latency of 5.1μs for 16 cores. The proposed congestion management method eliminates the need for FIFO in routers, resulting in a compact router footprint of 0.001 mm2. The proposed neurosynaptic core allows for increasing the processing speed by up to 8.5× depending on input sparsity. The SNN achieves a peak throughput of 4.7 GSOP/s at 0.9 V, consuming a minimum energy per synaptic operation (SOP) of 3.3 pJ at 0.55 V. A 4-layer feed-forward network is mapped onto the chip, classifying MNIST digits with 92.3% accuracy at 8.4Kclassification/ s and consuming 2.7-μJ/classification. Additionally, an audio recognition task mapped onto the chip achieves 87.4% accuracy at 215-μJ/classification. IEEE
暂无评论