In recent years, tungsten disulfide(WS_(2)) and tungsten selenide(WSe_(2)) have emerged as favorable electrode materials because of their high theoretical capacity, large interlayer spacing, and high chemical activity...
详细信息
In recent years, tungsten disulfide(WS_(2)) and tungsten selenide(WSe_(2)) have emerged as favorable electrode materials because of their high theoretical capacity, large interlayer spacing, and high chemical activity;nevertheless, they have relatively low electronic conductivity and undergo large volume expansion during cycling, which greatly hinder them in practical applications. These drawbacks are addressed by combining a superior type of carbon material, graphene, with WS_(2) and WSe_(2) to form a WS_(2)/WSe_(2)@graphene *** materials have received considerable attention in electro-chemical energy storage applications such as lithium-ion batteries(LIBs), sodium-ion batteries(SIBs),and supercapacitors. Considering the rapidly growing research enthusiasm on this topic over the past several years, here the recent progress of WS_(2)/WSe_(2)@graphene nanocomposites in electrochemical energy storage applications is summarized. Furthermore, various methods for the synthesis of WS_(2)/WSe_(2)@graphene nanocomposites are reported and the relationships among these methods, nano/microstructures, and electrochemical performance are systematically summarized and discussed. In addition, the challenges and prospects for the future study and application of WS_(2)/WSe_(2)@graphene nanocomposites in electrochemical energy storage applications are proposed.
Compositionally complex solid electrolyte(Li_(0.375)Sr_(0.4375))(Ta_(0.375)Nb_(0.375)Zr_(0.125)Hf_(0.125))O_(3)(LSTNZH)samples are synthesized using different sintering temperatures,durations,and cooling conditions(fu...
详细信息
Compositionally complex solid electrolyte(Li_(0.375)Sr_(0.4375))(Ta_(0.375)Nb_(0.375)Zr_(0.125)Hf_(0.125))O_(3)(LSTNZH)samples are synthesized using different sintering temperatures,durations,and cooling conditions(furnace cooling(FC)*** quenching(AQ)).The temperature-dependent grain growth has been examined to investigate the microstructural evolution and the origin of exaggerated(abnormal)grain *** moderate temperatures,the grain growth of LSTNZH follows a cubic root growth model with an Arrhenius temperature *** increasing temperature,bimodal microstructures develop,and the Arrhenius temperature dependence breaks ***,increasing the temperature induces increased Nb segregation at general grain boundaries(GBs),in contrast to classical GB segregation models but suggesting premelting-like GB disordering,which can explain the observed abnormal grain growth(AGG).In addition,the large grains become faceted with increasing temperature,which occurs concurrently with the temperature-induced transitions in GB segregation and grain growth,thereby further supporting the occurrence of a GB phase-like(complexion)*** impacts on the densification,ionic conductivity,and hardness are also *** work provides a new insight into the fundamental understanding of the grain growth mechanisms of the emergent class of medium-and high-entropy compositionally complex ceramics(CCCs),which is essential for tailoring microstructures and material properties.
An additional deposition step was added to a multi-step electron beam lithographic fabrication process to unlock the height dimension as an accessible parameter for resonators comprising unit cells of quasi-bound stat...
详细信息
An additional deposition step was added to a multi-step electron beam lithographic fabrication process to unlock the height dimension as an accessible parameter for resonators comprising unit cells of quasi-bound states in the continuum metasurfaces,which is essential for the geometric design of intrinsically chiral structures.
To accommodate the wide range of input voltages supplied by redundant batteries and ensure an adequate hold-up time for communication systems during utility power failures, power supplies used in 5 G base stations typ...
详细信息
Abstract The development of physically crosslinked hydrogels with excellent mechanical and sensing properties is of importance for expanding the practical applications of intelligent soft hydrogel ***,after copolymeri...
详细信息
Abstract The development of physically crosslinked hydrogels with excellent mechanical and sensing properties is of importance for expanding the practical applications of intelligent soft hydrogel ***,after copolymerization of hydroxyl-containing amino acid derivative N-acryloyl serine(ASer)with acrylamide(AM),we introduce Zr4+through an immersion strategy to construct metal ion-toughened non-covalent crosslinked hydrogels(with tensile strength of up to 5.73 MPa).It is found that the synergistic coordination of hydroxyl and carboxyl groups with Zr^(4+)substantially increases the crosslinking density of the hydrogels,thereby imparting markedly superior mechanical properties compared to hydroxyl-free Zr^(4+)-crosslinked hydrogels,such as N-acryloyl alanine(AAla)copolymerized with AM hydrogels(with tensile strength of 2.98 MPa)Through the adjustment of the composition of the copolymer and the density of coordination bonds,the mechanical properties of the hydrogels can be modulated over a wide ***,due to the introduction of metal ions and the dynamic nature of coordination bonds,the hydrogels also exhibit excellent sensing performance and good self-recovery properties,paving the way for the development of flexible electronic substrates with outstanding comprehensive performances.
作者:
Apon, Imtiaz AhamedHasan, Md RatulHaque, Md. Salman
Department of Electrical and Electronic Engineering Saidpur5311 Bangladesh
Department of Materials Science and Engineering Khulna9203 Bangladesh
Department of Materials and Metallurgical Engineering Dhaka1000 Bangladesh
Very-large-scale integration (VLSI) of elliptic curve cryptography (ECC) is vital for efficiently securing the digital world. This research demonstrates a description of elliptic curve cryptography (ECC), with a focus...
详细信息
Cavity electromagnonic system,which simultaneously consists of cavities for photons,magnons(quanta of spin waves),and acoustic phonons,provides an exciting platform to achieve coherent energy transduction among differ...
详细信息
Cavity electromagnonic system,which simultaneously consists of cavities for photons,magnons(quanta of spin waves),and acoustic phonons,provides an exciting platform to achieve coherent energy transduction among different physical systems down to single quantum *** we report a dynamical phase-field model that allows simulating the coupled dynamics of the electromagnetic waves,magnetization,and strain in 3D multiphase *** examples of application,we computationally demonstrate the excitation of hybrid magnon-photon modes(magnon polaritons),Floquet-induced magnonic Aulter-Townes splitting,dynamical energy exchange(Rabi oscillation)and relative phase control(Ramsey interference)between the two magnon polariton *** simulation results are consistent with analytical calculations based on Floquet Hamiltonian *** are also performed to design a cavity electro-magno-mechanical system that enables the triple phononmagnon-photon resonance,where the resonant excitation of a chiral,fundamental(n=1)transverse acoustic phonon mode by magnon polaritons is *** the capability to predict coupling strength,dissipation rates,and temporal evolution of photon/magnon/phonon mode profiles using fundamental materials parameters as the inputs,the present dynamical phase-fieldmodel represents a valuable computational tool to guide the fabrication of the cavity electromagnonic system and the design of operating conditions for applications in quantum sensing,transduction,and communication.
The ground state electron density—obtainable using Kohn-Sham Density Functional Theory(KSDFT)simulations—contains a wealth of material information,making its prediction via machine learning(ML)models ***,the computa...
详细信息
The ground state electron density—obtainable using Kohn-Sham Density Functional Theory(KSDFT)simulations—contains a wealth of material information,making its prediction via machine learning(ML)models ***,the computational expense of KS-DFT scales cubically with system size which tends to stymie training data generation,making it difficult to develop quantifiably accurate ML models that are applicable across many scales and system ***,we address this fundamental challenge by employing transfer learning to leverage the multi-scale nature of the training data,while comprehensively sampling systemconfigurations using *** ML models are less reliant on heuristics,and being based on Bayesian neural networks,enable uncertainty *** show that our models incur significantly lower data generation costs while allowing confident—and when verifiable,accurate—predictions for a wide variety of bulk systems well beyond training,including systems with defects,different alloy compositions,and at multi-million-atom ***,such predictions can be carried out using only modest computational resources.
This study examines the impact of environmental, social, and governance (ESG) factors on economic investment from a statistical perspective, aiming to develop a tested investment strategy that capitalizes on the conne...
详细信息
A designed Mg_(88.7)Ni_(6.3)Y_(5)hydrogen storage alloy containing 14H type LPSO(long-period stacking ordered)and ternary eutectic structure was prepared by regulating the alloy composition and *** hydrogen storage pe...
详细信息
A designed Mg_(88.7)Ni_(6.3)Y_(5)hydrogen storage alloy containing 14H type LPSO(long-period stacking ordered)and ternary eutectic structure was prepared by regulating the alloy composition and *** hydrogen storage performance of the alloy was improved by adding nano-flower-like TiO_(2)@C *** decomposition of the LPSO structure during hydrogenation led to the formation of plenty of nanocrystals which provided abundant interphase boundaries and activation *** nanoscale TiO_(2)@C catalyst was uniformly dispersed on the surface of alloy particles,and the"hydrogen overflow''effect of TiO_(2)@C accelerated the dissociation and diffusion of hydrogen on the surface of the alloy *** a result,the in-situ endogenous nanocrystals of the LPSO structure decomposition and the externally added flower-like TiO_(2)@C catalyst uniformly dispersed on the surface of the nanoparticles played a synergistic catalytic role in improving the hydrogen storage performance of the Mg-based *** the addition of the TiO_(2)@C catalyst,the beginning hydrogen desorption temperature was reduced to 200℃.Furthermore,the saturated hydrogen absorption capacity of the sample was 5.32 wt.%,and it reached 4.25 wt.%H_(2) in 1 min at 200℃and 30 bar.
暂无评论