In this paper,a comparative study for kernel-PCA based linear parameter varying(LPV)model approximation of sufficiently nonlinear and reasonably practical systems is carried *** matrix inequalities(LMIs)to be solved i...
详细信息
In this paper,a comparative study for kernel-PCA based linear parameter varying(LPV)model approximation of sufficiently nonlinear and reasonably practical systems is carried *** matrix inequalities(LMIs)to be solved in LPV controller design process increase exponentially with the increase in a number of scheduling *** kernel functions are used to obtain the approximate LPV model of highly coupled nonlinear *** error to norm ratio of original and approximate LPV models is introduced as a measure of accuracy of the approximate LPV *** examples conclude the effectiveness of kernel-PCA for LPV model approximation as with the identification of accurate approximate LPV model,computation complexity involved in LPV controller design is decreased exponentially.
We study the problem of policy estimation for the Linear Quadratic Regulator (LQR) in discrete-time linear timeinvariant uncertain dynamical systems. We propose a Moreau Envelope-based surrogate LQR cost, built from a...
详细信息
The global shift to renewable energy, especially wind power, is critical for achieving carbon-neutral power systems but poses challenges to grid stability due to reduced system inertia from inverter-based resources. G...
详细信息
With the exponential rise in global air traffic,ensuring swift passenger processing while countering potential security threats has become a paramount concern for aviation *** X-ray baggage monitoring is now standard,...
详细信息
With the exponential rise in global air traffic,ensuring swift passenger processing while countering potential security threats has become a paramount concern for aviation *** X-ray baggage monitoring is now standard,manual screening has several limitations,including the propensity for errors,and raises concerns about passenger *** address these drawbacks,researchers have leveraged recent advances in deep learning to design threatsegmentation ***,these models require extensive training data and labour-intensive dense pixelwise annotations and are finetuned separately for each dataset to account for inter-dataset ***,this study proposes a semi-supervised contour-driven broad learning system(BLS)for X-ray baggage security threat instance segmentation referred to as *** research methodology involved enhancing representation learning and achieving faster training capability to tackle severe occlusion and class imbalance using a single training routine with limited baggage *** proposed framework was trained with minimal supervision using resource-efficient image-level labels to localize illegal items in multi-vendor baggage *** specifically,the framework generated candidate region segments from the input X-ray scans based on local intensity transition cues,effectively identifying concealed prohibited items without entire baggage *** multi-convolutional BLS exploits the rich complementary features extracted from these region segments to predict object categories,including threat and benign *** contours corresponding to the region segments predicted as threats were then utilized to yield the segmentation *** proposed C-BLX system was thoroughly evaluated on three highly imbalanced public datasets and surpassed other competitive approaches in baggage-threat segmentation,yielding 90.04%,78.92%,and 59.44%in terms of mIoU on GDXray,SIXray,and Compass-XP,***,the lim
This paper deals with the problem of controller and observer design for the nonlinear, highly coupled constrained boiler-Turbine-generator system. The input vector (control valve state) has upper and lower limits, whi...
详细信息
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...
详细信息
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://***/yahuiliu99/PointC onT.
Nanodendritic structures have gained increasing popularity in electrochemical sensors. However, it is still rare to generate a 3-D model in a short period of time to understand the structure-function relationship of t...
详细信息
Recent years have seen a rising interest in distributed optimization problems because of their widespread applications in power grids, multi-robot control, and regression *** the last few decades, many distributed alg...
Recent years have seen a rising interest in distributed optimization problems because of their widespread applications in power grids, multi-robot control, and regression *** the last few decades, many distributed algorithms have been developed for tackling distributed optimization problems. In these algorithms, agents over the network only have access to their own local functions and exchange information with their neighbors.
This paper presents a review on methods for class-imbalanced learning with the Support Vector Machine (SVM) and its variants. We first explain the structure of SVM and its variants and discuss their inefficiency in le...
详细信息
With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation systems(C-ITSs)have become an important area of *** the number of Vehic...
详细信息
With the rise of the Internet of Vehicles(IoV)and the number of connected vehicles increasing on the roads,Cooperative Intelligent Transportation systems(C-ITSs)have become an important area of *** the number of Vehicle to Vehicle(V2V)and Vehicle to Interface(V2I)communication links increases,the amount of data received and processed in the network also *** addition,networking interfaces need to be made more secure for which existing cryptography-based security schemes may not be ***,there is a need to augment them with intelligent network intrusion detection *** machine learning-based intrusion detection and anomaly detection techniques for vehicular networks have been proposed in recent ***,given the expected large network size,there is a necessity for extensive data processing for use in such anomaly detection *** learning solutions are lucrative options as they remove the necessity for feature ***,with the amount of vehicular network traffic increasing at an unprecedented rate in the C-ITS scenario,the need for deep learning-based techniques is all the more *** work presents three deep learning-based misbehavior classification schemes for intrusion detection in IoV networks using Long Short Term Memory(LSTM)and Convolutional Neural Networks(CNNs).The proposed Deep Learning Classification Engines(DCLE)comprise of single or multi-step classification done by deep learning models that are deployed on the vehicular edge *** data received by the Road Side Units(RSUs)is pre-processed and forwarded to the edge server for classifications following the three classification schemes proposed in this *** proposed classifiers identify 18 different vehicular behavior types,the F1-scores ranging from 95.58%to 96.75%,much higher than the existing *** running the classifiers on testbeds emulating edge servers,the prediction performance and prediction time comparison of
暂无评论