咨询与建议

限定检索结果

文献类型

  • 17 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 16 篇 工学
    • 11 篇 计算机科学与技术...
    • 10 篇 软件工程
    • 5 篇 电气工程
    • 4 篇 光学工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 电子科学与技术(可...
    • 3 篇 信息与通信工程
    • 3 篇 生物工程
    • 1 篇 控制科学与工程
  • 13 篇 理学
    • 8 篇 物理学
    • 6 篇 数学
    • 4 篇 统计学(可授理学、...
    • 3 篇 生物学
  • 5 篇 管理学
    • 3 篇 图书情报与档案管...
    • 2 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 2 篇 药学(可授医学、理...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 2 篇 magnetic resonan...
  • 1 篇 alzheimer's dise...
  • 1 篇 self-aware
  • 1 篇 legged locomotio...
  • 1 篇 brain atrophy
  • 1 篇 entorhinal corte...
  • 1 篇 early detection
  • 1 篇 deep learning
  • 1 篇 state feedback
  • 1 篇 deep neural netw...
  • 1 篇 exoskeletons
  • 1 篇 multi-volume
  • 1 篇 computational fl...
  • 1 篇 task analysis
  • 1 篇 job analysis
  • 1 篇 image segmentati...
  • 1 篇 fluid dynamics
  • 1 篇 zero-shot learni...
  • 1 篇 lda
  • 1 篇 autonomous syste...

机构

  • 2 篇 school of comput...
  • 2 篇 department of qu...
  • 2 篇 visual geometry ...
  • 2 篇 universitat pomp...
  • 2 篇 ihu strasbourg s...
  • 2 篇 diagnostic image...
  • 2 篇 visual computing...
  • 2 篇 otto-von-guerick...
  • 2 篇 centre for visio...
  • 1 篇 electrical engin...
  • 1 篇 department of ma...
  • 1 篇 1120 enterprise ...
  • 1 篇 audio and speech...
  • 1 篇 university of sc...
  • 1 篇 department of el...
  • 1 篇 department of ra...
  • 1 篇 laboratory of ad...
  • 1 篇 college of mathe...
  • 1 篇 visual artificia...
  • 1 篇 universitat autò...

作者

  • 3 篇 carneiro gustavo
  • 2 篇 wang ran
  • 2 篇 bakas spyridon
  • 2 篇 galdran adrian
  • 2 篇 van ginneken bra...
  • 2 篇 kuijf hugo j.
  • 2 篇 kofler florian
  • 2 篇 sánchez clara i.
  • 2 篇 reid ian
  • 2 篇 sudre carole h.
  • 2 篇 cardoso m. jorge
  • 2 篇 wang xi-zhao
  • 2 篇 belagiannis vasi...
  • 2 篇 menze bjoern
  • 2 篇 sachdeva ragav
  • 2 篇 pourpanah farhad
  • 2 篇 lim chee peng
  • 1 篇 kreshuk anna
  • 1 篇 prof. jian-xin x...
  • 1 篇 yoshino koichiro

语言

  • 23 篇 英文
检索条件"机构=Department of Electrical and Computer Engineering - Signal Processing and Machine Learning"
23 条 记 录,以下是1-10 订阅
排序:
ProMap: Effective Bilingual Lexicon Induction via Language Model Prompting
arXiv
收藏 引用
arXiv 2023年
作者: Mekki, Abdellah El Abdul-Mageed, Muhammad Nagoudi, El Moatez Billah Berrada, Ismail Khoumsi, Ahmed College of Computing Mohammed VI Polytechnic University Morocco Deep Learning & Natural Language Processing Group The University of British Columbia Canada Department of Natural Language Processing Department of Machine Learning MBZUAI United Arab Emirates Department of Electrical & Computer Engineering University of Sherbrooke Canada
Bilingual Lexicon Induction (BLI), where words are translated between two languages, is an important NLP task. While noticeable progress on BLI in rich resource languages using static word embeddings has been achieved... 详细信息
来源: 评论
learning Fair Representations through Uniformly Distributed Sensitive Attributes
Learning Fair Representations through Uniformly Distributed ...
收藏 引用
Secure and Trustworthy machine learning (SaTML), IEEE Conference on
作者: Patrik Joslin Kenfack Adín Ramírez Rivera Adil Mehmood Khan Manuel Mazzara Machine Learning and Knowledge Representation Lab Innopolis University Innopolis Russia Department of Informatics Digital Signal Processing and Image Analysis (DSB) group University of Oslo Oslo Norway School of Computer Science University of Hull Hull UK Institute of Software Development and Engineering Innopolis University Innopolis Russia
machine learning (ML) models trained on biased data can reproduce and even amplify these biases. Since such models are deployed to make decisions that can affect people's lives, ensuring their fairness is critical...
来源: 评论
Robust Barron-Loss Tucker Tensor Decomposition
TechRxiv
收藏 引用
TechRxiv 2021年
作者: Mozaffari, Mahsa Markopoulos, Panos P. Department of Electrical and Microelectronic Engineering Machine Learning Optimization and Signal Processing Laboratory Rochester Institute of Technology RochesterNY14623 United States
Tucker decomposition is a standard method for the analysis of high-order tensor data. Standard Tucker decomposition generalizes singular-value decomposition and is formulated as minimization of the L2-norm of the low-... 详细信息
来源: 评论
Uncertainty quantification for sparse Fourier recovery
arXiv
收藏 引用
arXiv 2022年
作者: Hoppe, Frederik Krahmer, Felix Verdun, Claudio Mayrink Menzel, Marion I. Rauhut, Holger Mathematics of Information Processing RWTH Aachen University Aachen Germany Department of Mathematics Munich Data Science Institute Technical University of Munich Munich Center for Machine Learning Munich Germany Department of Mathematics Department of Electrical and Computer Engineering Technical University of Munich Munich Center for Machine Learning Munich Germany AImotion Bavaria Faculty of Electrical Engineering and Information Technology Technische Hochschule Ingolstadt Ingolstadt Department of Physics Technical University of Munich Garching and GE Healthcare Munich Germany Department of Mathematics LMU Munich Germany
One of the most prominent methods for uncertainty quantification in high-dimensional statistics is the desparsified LASSO that relies on unconstrained 1-minimization. The majority of initial works focused on real (sub... 详细信息
来源: 评论
A predictive surrogate model for heat transfer of an impinging jet on a concave surface
收藏 引用
International Journal of Heat and Mass Transfer 2025年 251卷
作者: Sajad Salavatidezfouli Saeed Rakhsha Armin Sheidani Giovanni Stabile Gianluigi Rozza Mathematics Area MathLab International School for Advanced Studies (SISSA) Trieste Italy Department of Electrical and Computer Engineering - Signal Processing and Machine Learning Aarhus University Aarhus Denmark Department of Mechanical Engineering Semnan University Semnan Iran Department of Applied Physics Eindhoven University of Technology The Netherlands Department of Pure and Applied Sciences Informatics and Mathematics Section University of Urbino Carlo Bo Urbino Italy The Biorobotics Institute Sant’Anna School of Advanced Studies Pisa Italy
This paper aims to comprehensively investigate the efficacy of model order reduction and deep learning techniques in predicting heat transfer of pulsatile impinging jets on a concave surface. We introduce two predicti...
来源: 评论
ScanMix: learning from Severe Label Noise via Semantic Clustering and Semi-Supervised learning
arXiv
收藏 引用
arXiv 2021年
作者: Sachdeva, Ragav Cordeiro, Filipe Rolim Belagiannis, Vasileios Reid, Ian Carneiro, Gustavo Visual Geometry Group Department of Engineering Science University of Oxford United Kingdom School of Computer Science Australian Institute for Machine Learning Australia Visual Computing Lab Department of Computing Universidade Federal Rural de Pernambuco Brazil Otto-von-Guericke-Universität Magdeburg Germany Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
We propose a new training algorithm, ScanMix, that explores semantic clustering and semi-supervised learning (SSL) to allow superior robustness to severe label noise and competitive robustness to non-severe label nois... 详细信息
来源: 评论
LongReMix: Robust learning with High Confidence Samples in a Noisy Label Environment
arXiv
收藏 引用
arXiv 2021年
作者: Cordeiro, Filipe R. Sachdeva, Ragav Belagiannis, Vasileios Reid, Ian Carneiro, Gustavo School of Computer Science Australian Institute for Machine Learning Australia Visual Geometry Group Department of Engineering Science University of Oxford United Kingdom Visual Computing Lab Department of Computing Universidade Federal Rural de Pernambuco Brazil Otto-von-Guericke-Universität Magdeburg Germany Centre for Vision Speech and Signal Processing University of Surrey United Kingdom
State-of-the-art noisy-label learning algorithms rely on an unsupervised learning to classify training samples as clean or noisy, followed by a semi-supervised learning (SSL) that minimises the empirical vicinal risk ... 详细信息
来源: 评论
Overview of the Tenth Dialog System Technology Challenge: DSTC10
收藏 引用
IEEE/ACM Transactions on Audio Speech and Language processing 2024年 32卷 765-778页
作者: Yoshino, Koichiro Chen, Yun-Nung Crook, Paul Kottur, Satwik Li, Jinchao Hedayatnia, Behnam Moon, Seungwhan Fei, Zhengcong Li, Zekang Zhang, Jinchao Feng, Yang Zhou, Jie Kim, Seokhwan Liu, Yang Jin, Di Papangelis, Alexandros Gopalakrishnan, Karthik Hakkani-Tur, Dilek Damavandi, Babak Geramifard, Alborz Hori, Chiori Shah, Ankit Zhang, Chen Li, Haizhou Sedoc, Joao D'haro, Luis F. Banchs, Rafael Rudnicky, Alexander Guardian Robot Project R-IH RIKEN 2-2-2 Hikaridai Seika Shoraku619-0288 Japan Information Science Nara Institute of Science and Technology Ikoma630-0101 Japan Computer Science and Information Engineering National Taiwan University Taipei10617 Taiwan Inc. Palo AltoCA95054 United States Alexa AI *** Inc. SunnyvaleCA94089 United States Meta Seattle RedmondWA98052 United States Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing100190 China Tencent AI Lab Beijing Beijing China Kexueyuan South Road Zhongguancun Beijing100190 China Beijing 100190 China Alexa AI *** Inc. SunnyvaleCA United States 1120 Enterprise way Sunnyvale94089 United States *** Inc. SeattleWA United States Menlo Park CA United States Audio and Speech Group Mitsubishi Electric Research Laboratories CambridgeMA02139-1955 United States Carnegie Mellon University Department of Language and Information Technologies or just Carnegie Mellon University Pittsburgh United States National University of Singapore Singapore Singapore Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Shenzhen Research Institute of Big Data School of Data Science Chinese University of Hong Kong Shenzhen518172 China New York University New YorkNY United States ETSI de Telecomunicacion - Speech Technology and Machine Learning Group Universidad Politecnica de Madrid Ciudad Universitaria Madrid28040 Spain Nanyang Technological University Singapore Singapore Carnegie Mellon University PittsburghPA United States
This article introduces the Tenth Dialog System Technology Challenge (DSTC-10). This edition of the DSTC focuses on applying end-to-end dialog technologies for five distinct tasks in dialog systems, namely 1. Incorpor... 详细信息
来源: 评论
QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge
arXiv
收藏 引用
arXiv 2024年
作者: Li, Hongwei Bran Navarro, Fernando Ezhov, Ivan Bayat, Amirhossein Das, Dhritiman Kofler, Florian Shit, Suprosanna Waldmannstetter, Diana Paetzold, Johannes C. Hu, Xiaobin Wiestler, Benedikt Zimmer, Lucas Amiranashvili, Tamaz Prabhakar, Chinmay Berger, Christoph Weidner, Jonas Alonso-Basanta, Michelle Rashid, Arif Baid, Ujjwal Adel, Wesam Alis, Deniz Baheti, Bhakti Bai, Yingbin Bhat, Ishaan Cetindag, Sabri Can Chen, Wenting Cheng, Li Dutande, Prasad Dular, Lara Elattar, Mustafa A. Feng, Ming Gao, Shengbo Huisman, Henkjan Hu, Weifeng Innani, Shubham Ji, Wei Karimi, Davood Kuijf, Hugo J. Kwak, Jin Tae Le, Hoang Long Li, Xiang Lin, Huiyan Liu, Tongliang Ma, Jun Ma, Kai Ma, Ting Oksuz, Ilkay Holland, Robbie Oliveira, Arlindo L. Pal, Jimut Bahan Pei, Xuan Qiao, Maoying Saha, Anindo Selvan, Raghavendra Shen, Linlin Silva, Joao Lourenco Spiclin, Ziga Talbar, Sanjay Wang, Dadong Wang, Wei Wang, Xiong Wang, Yin Xi, Ruiling Xu, Kele Yang, Yanwu Yergin, Mert Yu, Shuang Zeng, Lingxi Zhang, YingLin Zhao, Jiachen Zheng, Yefeng Zukovec, Martin Do, Richard Becker, Anton Simpson, Amber Konukoglu, Ender Jakab, Andras Bakas, Spyridon Joskowicz, Leo Menze, Bjoern Department of Informatics Technical University of Munich Germany Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Harvard Medical School United States Department of Quantitative Biomedicine University of Zurich Switzerland University Children’s Hospital Zurich University of Zurich Switzerland Department of Radioncology and Radiation Theraphy Klinikum rechts der Isar Technical University of Munich Germany Department of Information Technology and Electrical Engineering ETH-Zurich Switzerland Department of Radiology Memorial Sloan Kettering Cancer Center New York City United States Department of Biomedical and Molecular Sciences Queen’s University Canada TranslaTUM - Central Institute for Translational Cancer Research Technical University of Munich Germany McGovern Institute Massachusetts Institute of Technology United States Institute for Diagnostic and Interventional Radiology Unveristy Zurich Hospital Switzerland BioMedIA Imperial College London United Kingdom Department of Radiation Oncology University of Pennsylvania PA United States University of Pennsylvania PA United States Department of Radiation Oncology Winship Cancer Institute of Emory University Georgia United States Nile University Cairo Egypt Department of Medical Sciences Acibadem University Istanbul Turkey Shri Guru Gobind Singhji Institute of Engineering and Technology Maharashtra Nanded India Trustworthy Machine Learning Lab University of Sydney Australia Image Sciences Institute University Medical Center Utrecht Netherlands Computer Engineering Department Istanbul Technical University Istanbul Turkey School of Computer Science Shenzhen University Shenzhen China University of Alberta United States University of Ljubljana Faculty of Electrical Engineering Ljubljana Slovenia Tongji University Shanghai China OPPO Research Institute Shanghai China School of Biological and Medical Engineering Beihang University Beijing China Harvard Medical School Boston
Uncertainty in medical image segmentation tasks, especially inter-rater variability, arising from differences in interpretations and annotations by various experts, presents a significant challenge in achieving consis... 详细信息
来源: 评论
A Review of Generalized Zero-Shot learning Methods
arXiv
收藏 引用
arXiv 2020年
作者: Pourpanah, Farhad Abdar, Moloud Luo, Yuxuan Zhou, Xinlei Wang, Ran Lim, Chee Peng Wang, Xi-Zhao Jonathan Wu, Q.M. The Centre for Computer Vision and Deep Learning Department of Electrical and Computer Engineering University of Windsor WindsorONN9B 3P4 Canada Deakin University Australia The Department of Computer Science City University of Hong Kong Hong Kong The College of Mathematics and Statistics Shenzhen Key Lab. of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China The College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University Shenzhen518060 China
Generalized zero-shot learning (GZSL) aims to train a model for classifying data samples under the condition that some output classes are unknown during supervised learning. To address this challenging task, GZSL leve... 详细信息
来源: 评论