Well-working Internet connectivity is a fundamental citizen right and a necessity in modern digital societies. Nevertheless, the digital divide persists and often affects rural or remote areas. To bridge the digital d...
详细信息
Prenatal depression,which can affect pregnant women’s physical and psychological health and cause postpartum depression,is increasing ***,it is essential to detect prenatal depression early and conduct an attribution...
详细信息
Prenatal depression,which can affect pregnant women’s physical and psychological health and cause postpartum depression,is increasing ***,it is essential to detect prenatal depression early and conduct an attribution *** studies have used questionnaires to screen for prenatal depression,but the existing methods lack *** diagnose the early signs of prenatal depression and identify the key factors that may lead to prenatal depression from questionnaires,we present the semantically enhanced option embedding(SEOE)model to represent questionnaire *** can quantitatively determine the relationship and patterns between options and *** first quantifies options and resorts them,gathering options with little difference,since Word2Vec is highly dependent on *** resort task is transformed into an optimization problem involving the traveling salesman ***,all questionnaire samples are used to train the options’vector using ***,an LSTM and GRU fused model incorporating the cycle learning rate is constructed to detect whether a pregnant woman is suffering from *** verify the model,we compare it with other deep learning and traditional machine learning *** experiment results show that our proposed model can accurately identify pregnant women with depression and reach an F1 score of *** most relevant factors of depression found by SEOE are also verified in the *** addition,our model is of low computational complexity and strong generalization,which can be widely applied to other questionnaire analyses of psychiatric disorders.
Building Automation Systems(BASs)are seeing increased usage in modern society due to the plethora of benefits they provide such as automation for climate control,HVAC systems,entry systems,and lighting *** BASs in use...
详细信息
Building Automation Systems(BASs)are seeing increased usage in modern society due to the plethora of benefits they provide such as automation for climate control,HVAC systems,entry systems,and lighting *** BASs in use are outdated and suffer from numerous vulnerabilities that stem from the design of the underlying BAS *** this paper,we provide a comprehensive,up-to-date survey on BASs and attacks against seven BAS protocols including BACnet,EnOcean,KNX,LonWorks,Modbus,ZigBee,and *** studies of secure BAS protocols are also presented,covering BACnet Secure Connect,KNX Data Secure,KNX/IP Secure,ModBus/TCP Security,EnOcean High Security and Z-Wave *** and ZigBee do not have security *** point out how these security protocols improve the security of the BAS and what issues remain.A case study is provided which describes a real-world BAS and showcases its vulnerabilities as well as recommendations for improving the security of *** seek to raise awareness to those in academia and industry as well as highlight open problems within BAS security.
Machine learning algorithms generally assume that the data are balanced in nature. However, medical datasets suffer from the curse of dimensionality and class imbalance problems. The medical datasets are obtained from...
详细信息
Machine learning algorithms generally assume that the data are balanced in nature. However, medical datasets suffer from the curse of dimensionality and class imbalance problems. The medical datasets are obtained from the patient information which creates an imbalance in class distribution as the number of normal persons is more than the number of patients and contains a large number of features to represent a sample. It tends to the machine learning algorithms biased toward the majority class which degrades their classification performance for minority class samples and increases the computation overhead. Therefore, oversampling, feature selection and feature weighting-based four strategies are proposed to deal with the problems of class imbalance and high dimensionality. The key idea behind the proposed strategies is to generate a balanced sample space along with the optimal weighted feature space of the most relevant and discriminative features. The Synthetic Minority Oversampling Technique is utilized to generate the synthetic minority class samples and reduce the bias toward the majority class. An Improved Elephant Herding Optimization algorithm is applied to select the optimal features and weights for reducing the computation overhead and improving the interpretation ability of the learning algorithms by providing weights to relevant features. In addition, thirteen methods are developed from the proposed strategies to deal with the problems of high-dimensionality and imbalanced data. The optimized k-Nearest Neighbor (k-NN) learning algorithm is utilized to perform classification. The performance of the proposed methods is evaluated and compared for sixteen high-dimensional imbalanced medical datasets. Further, Freidman’s mean rank test is applied to show the statistical difference between the proposed methods. Experimental and statistical results show that the proposed Feature Weighting followed by the Feature Selection (FW–FS) method performed significantly b
In the Internet of Things (IoT), optimizing machine performance through data analysis and improved connectivity is pivotal. Addressing the growing need for environmentally friendly IoT solutions, we focus on "gre...
详细信息
This paper explains step-by-step modeling and simulation of the full circuits of a battery control system and connected together starting from the AC input source to the battery control and storage *** three-phase hal...
详细信息
This paper explains step-by-step modeling and simulation of the full circuits of a battery control system and connected together starting from the AC input source to the battery control and storage *** three-phase half-controlled rectifier has been designed to control and convert the AC power into DC *** addition,two types of direct current converters have been used in this paper which are a buck and bidirectional DC/DC *** systems adjust the output voltage to be lower or higher than the input *** the buck converters,the main switch operates in conduction or cut-off mode and is triggered by a Pulse-Width Modulated(PWM)*** output and input voltage levels ratio are used to calculate thePWMsignal’s duty ***,the duty cycle indicates the operation mode of the converter in steady-state *** this study,we analyze and control of a buck converter with the PWM ***,the bidirectional DC/DC converter has been achieved and optimized by PI control methods to control the battery charging and discharging *** simulation has been applied via the Matlab/Simulink *** results show the activity of each part of the designed circuits starting from the converters and the battery control system in charge and discharge modes.
The network switches in the data plane of Software Defined Networking (SDN) are empowered by an elementary process, in which enormous number of packets which resemble big volumes of data are classified into specific f...
详细信息
The network switches in the data plane of Software Defined Networking (SDN) are empowered by an elementary process, in which enormous number of packets which resemble big volumes of data are classified into specific flows by matching them against a set of dynamic rules. This basic process accelerates the processing of data, so that instead of processing singular packets repeatedly, corresponding actions are performed on corresponding flows of packets. In this paper, first, we address limitations on a typical packet classification algorithm like Tuple Space Search (TSS). Then, we present a set of different scenarios to parallelize it on different parallel processing platforms, including Graphics Processing Units (GPUs), clusters of Central Processing Units (CPUs), and hybrid clusters. Experimental results show that the hybrid cluster provides the best platform for parallelizing packet classification algorithms, which promises the average throughput rate of 4.2 Million packets per second (Mpps). That is, the hybrid cluster produced by the integration of Compute Unified Device Architecture (CUDA), Message Passing Interface (MPI), and OpenMP programming model could classify 0.24 million packets per second more than the GPU cluster scheme. Such a packet classifier satisfies the required processing speed in the programmable network systems that would be used to communicate big medical data.
Due to the increase in demand for electricity, the lack of fossil fuels, and the use of renewable energy sources, the use of energy storage systems becomes necessary. The use of storage systems in different parts of m...
详细信息
The Internet of Things (IoT) facilitates the delivery of intelligent services by sensing, gathering, processing, and exchanging data from millions of linked smart devices. The Internet of Things (IoT), which is based ...
详细信息
暂无评论