Direct training of Spiking Neural Networks (SNNs) is a challenging task because of their inherent temporality. Added to it, the vanilla Back-propagation based methods are not applicable either, due to the non-differen...
详细信息
Direct training of Spiking Neural Networks (SNNs) is a challenging task because of their inherent temporality. Added to it, the vanilla Back-propagation based methods are not applicable either, due to the non-differentiability of the spikes in SNNs. Surrogate-Derivative based methods with Backpropagation Through Time (BPTT) address these direct training challenges quite well;however, such methods are not neuromorphic-hardware friendly for the On-chip training of SNNs. Recently formalized Three-Factor based Rules (TFR) for direct local-training of SNNs are neuromorphic-hardware friendly;however, they do not effectively leverage the depth of the SNN architectures (we show it empirically here), thus, are limited. In this work, we present an improved version of a conventional three-factor rule, for local learning in SNNs which effectively leverages depth - in the context of learning features hierarchically. Taking inspiration from the Back-propagation algorithm, we theoretically derive our improved, local, three-factor based learning method, named DALTON (Deep LocAl Learning via local WeighTs and SurrOgate-Derivative TraNsfer), which employs weights and surrogate-derivative transfer from the local layers. Along the lines of TFR, our proposed method DALTON is also amenable to the neuromorphic-hardware implementation. Through extensive experiments on static (MNIST, FMNIST, & CIFAR10) and event-based (N-MNIST, DVS128-Gesture, & DVSCIFAR10) datasets, we show that our proposed local-learning method DALTON makes effective use of the depth in Convolutional SNNs, compared to the vanilla TFR implementation. IEEE
The substring edit error replaces a substring u of x with another string v, where the lengths of u and v are bounded by a given constant k. It encompasses localized insertions, deletions, and substitutions within a wi...
详细信息
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. Howeve...
详细信息
Integrated sensing and communication (ISAC) is a promising technique to increase spectral efficiency and support various emerging applications by sharing the spectrum and hardware between these functionalities. However, the traditional ISAC schemes are highly dependent on the accurate mathematical model and suffer from the challenges of high complexity and poor performance in practical scenarios. Recently, artificial intelligence (AI) has emerged as a viable technique to address these issues due to its powerful learning capabilities, satisfactory generalization capability, fast inference speed, and high adaptability for dynamic environments, facilitating a system design shift from model-driven to data-driven. Intelligent ISAC, which integrates AI into ISAC, has been a hot topic that has attracted many researchers to investigate. In this paper, we provide a comprehensive overview of intelligent ISAC, including its motivation, typical applications, recent trends, and challenges. In particular, we first introduce the basic principle of ISAC, followed by its key techniques. Then, an overview of AI and a comparison between model-based and AI-based methods for ISAC are provided. Furthermore, the typical applications of AI in ISAC and the recent trends for AI-enabled ISAC are reviewed. Finally, the future research issues and challenges of intelligent ISAC are discussed.
The perception in most existing vision-based reinforcement learning(RL) models for robotic manipulation relies heavily on static third-person or hand-mounted first-person cameras. In scenarios with occlusions and limi...
详细信息
The perception in most existing vision-based reinforcement learning(RL) models for robotic manipulation relies heavily on static third-person or hand-mounted first-person cameras. In scenarios with occlusions and limited maneuvering space, these carefully positioned cameras often struggle to provide effective visual observations during manipulation. Taking inspiration from human capabilities, we introduce a novel RL-based dual-arm active visual-guided manipulation model(DAVMM), which simultaneously infers “eye” actions and “hand” actions for two separate robotic arms(referred to as the vision-arm and the worker-arm) based on current observations, empowering the robot with the ability to actively perceive and interact with its environment. To handle the extensive redundant observation-action space, we propose a decouplable target-centric reward paradigm to offer stable guidance for the training process. For making fine-grained manipulation action decisions, alongside a global scene image encoder, we utilize an independent encoder to extract local target texture features,enabling the simultaneous acquisition of both global and detailed local information. Additionally, we employ residual-RL and curriculum learning techniques to further enhance our model's sample efficiency and training stability. We conducted comparative experiments and analyses of DAVMM against a set of strong baselines on three occluded and narrow-space manipulation tasks. DAVMM notably improves the success rates across all manipulation tasks and showcases rapid learning capabilities.
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inher...
详细信息
Matrix minimization techniques that employ the nuclear norm have gained recognition for their applicability in tasks like image inpainting, clustering, classification, and reconstruction. However, they come with inherent biases and computational burdens, especially when used to relax the rank function, making them less effective and efficient in real-world scenarios. To address these challenges, our research focuses on generalized nonconvex rank regularization problems in robust matrix completion, low-rank representation, and robust matrix regression. We introduce innovative approaches for effective and efficient low-rank matrix learning, grounded in generalized nonconvex rank relaxations inspired by various substitutes for the ?0-norm relaxed functions. These relaxations allow us to more accurately capture low-rank structures. Our optimization strategy employs a nonconvex and multi-variable alternating direction method of multipliers, backed by rigorous theoretical analysis for complexity and *** algorithm iteratively updates blocks of variables, ensuring efficient convergence. Additionally, we incorporate the randomized singular value decomposition technique and/or other acceleration strategies to enhance the computational efficiency of our approach, particularly for large-scale constrained minimization problems. In conclusion, our experimental results across a variety of image vision-related application tasks unequivocally demonstrate the superiority of our proposed methodologies in terms of both efficacy and efficiency when compared to most other related learning methods.
The droop-free control adopted in microgrids has been designed to cope with global power-sharing goals,i.e.,sharing disturbance mitigation among all controllable assets to even their ***,limited by neighboring communi...
详细信息
The droop-free control adopted in microgrids has been designed to cope with global power-sharing goals,i.e.,sharing disturbance mitigation among all controllable assets to even their ***,limited by neighboring communication,the time-consuming peer-to-peer coordination of the droopfree control slows down the nodal convergence to global consensus,reducing the power-sharing efficiency as the number of nodes *** this end,this paper first proposes a local power-sharing droop-free control scheme to contain disturbances within nearby nodes,in order to reduce the number of nodes involved in the coordination and accelerate the convergence speed.A hybrid local-global power-sharing scheme is then put forward to leverage the merits of both schemes,which also enables the autonomous switching between local and global power-sharing modes according to the system *** guidance for key control parameter designs is derived via the optimal control methods,by optimizing the power-sharing distributions at the steady-state consensus as well as along the dynamic trajectory to *** system stability of the hybrid scheme is proved by the eigenvalue analysis and Lyapunov direct ***,simulation results validate that the proposed hybrid local-global power-sharing scheme performs stably against disturbances and achieves the expected control performance in local and global power-sharing modes as well as mode ***,compared with the classical global power-sharing scheme,the proposed scheme presents promising benefits in convergence speed and scalability.
In optical applications where avalanche photodiodes (APDs) provide the benefit of high sensitivity, Sb-based materials systems such as AlInAsSb and AlGaAsSb have shown extremely low excess noise factors. The Monte Car...
详细信息
Wide field of view and light weight optics are critical for advanced eyewear,with applications in augmented/virtual reality and night *** refractive lenses are often stacked to correct aberrations at a wide field of v...
详细信息
Wide field of view and light weight optics are critical for advanced eyewear,with applications in augmented/virtual reality and night *** refractive lenses are often stacked to correct aberrations at a wide field of view,leading to limited performance and increased size and *** particular,simultaneously achieving a wide field of view and large aperture for light collection is desirable but challenging to realize in a compact ***,we demonstrate a wide field of view(greater than 60°)meta-optic doublet eyepiece with an entrance aperture of 2.1 *** the design wavelength of 633 nm,the meta-optic doublet achieves comparable performance to a refractive lens-based eyepiece *** meta-doublet eyepiece illustrates the potential for meta-optics to play an important role in the development of high-quality monochrome near-eye displays and night vision systems.
Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power *** power consumption at the receiver radio frequenc...
详细信息
Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power *** power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low *** this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician *** start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in *** also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the *** emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining *** also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable *** emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO.
The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challeng...
详细信息
The power grid is undergoing a transformation from synchronous generators(SGs) toward inverter-based resources(IBRs). The stochasticity, asynchronicity, and limited-inertia characteristics of IBRs bring about challenges to grid resilience. Virtual power plants(VPPs) are emerging technologies to improve the grid resilience and advance the transformation. By judiciously aggregating geographically distributed energy resources(DERs) as individual electrical entities, VPPs can provide capacity and ancillary services to grid operations and participate in electricity wholesale markets. This paper aims to provide a concise overview of the concept and development of VPPs and the latest progresses in VPP operation, with the focus on VPP scheduling and control. Based on this overview, we identify a few potential challenges in VPP operation and discuss the opportunities of integrating the multi-agent system(MAS)-based strategy into the VPP operation to enhance its scalability, performance and resilience.
暂无评论