咨询与建议

限定检索结果

文献类型

  • 1,270 篇 会议
  • 859 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 2,132 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,301 篇 工学
    • 452 篇 生物医学工程(可授...
    • 393 篇 光学工程
    • 388 篇 生物工程
    • 373 篇 计算机科学与技术...
    • 298 篇 电子科学与技术(可...
    • 285 篇 软件工程
    • 240 篇 电气工程
    • 164 篇 信息与通信工程
    • 161 篇 仪器科学与技术
    • 158 篇 控制科学与工程
    • 152 篇 材料科学与工程(可...
    • 145 篇 化学工程与技术
    • 100 篇 机械工程
    • 95 篇 力学(可授工学、理...
    • 33 篇 冶金工程
    • 33 篇 动力工程及工程热...
  • 1,046 篇 理学
    • 606 篇 物理学
    • 461 篇 生物学
    • 225 篇 数学
    • 210 篇 化学
    • 75 篇 统计学(可授理学、...
    • 49 篇 系统科学
  • 342 篇 医学
    • 265 篇 临床医学
    • 234 篇 基础医学(可授医学...
    • 151 篇 药学(可授医学、理...
    • 53 篇 公共卫生与预防医...
  • 129 篇 管理学
    • 93 篇 管理科学与工程(可...
    • 41 篇 工商管理
  • 57 篇 农学
    • 46 篇 作物学
  • 31 篇 经济学
  • 14 篇 法学
  • 13 篇 教育学
  • 2 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 58 篇 electrodes
  • 54 篇 biomedical engin...
  • 45 篇 magnetic resonan...
  • 43 篇 image reconstruc...
  • 35 篇 electroencephalo...
  • 34 篇 deep learning
  • 34 篇 feature extracti...
  • 33 篇 optical imaging
  • 31 篇 neural networks
  • 30 篇 neurons
  • 28 篇 biosensors
  • 26 篇 computational mo...
  • 26 篇 accuracy
  • 25 篇 image segmentati...
  • 22 篇 tissue
  • 22 篇 educational inst...
  • 22 篇 machine learning
  • 22 篇 biomedical imagi...
  • 22 篇 proteins
  • 22 篇 heart

机构

  • 163 篇 electrical and c...
  • 149 篇 bioengineering d...
  • 144 篇 university of ca...
  • 39 篇 department of su...
  • 38 篇 department of bi...
  • 34 篇 department of el...
  • 32 篇 california nanos...
  • 28 篇 electrical and c...
  • 28 篇 department of el...
  • 28 篇 bioengineering d...
  • 27 篇 electrical and c...
  • 25 篇 bioengineering d...
  • 24 篇 department of su...
  • 22 篇 california nanos...
  • 21 篇 beckman institut...
  • 21 篇 california nanos...
  • 19 篇 department of el...
  • 19 篇 division of bioe...
  • 18 篇 david geffen sch...
  • 17 篇 computer science...

作者

  • 197 篇 ozcan aydogan
  • 82 篇 aydogan ozcan
  • 60 篇 rivenson yair
  • 53 篇 li jingxi
  • 50 篇 jarrahi mona
  • 45 篇 bai bijie
  • 43 篇 boppart stephen ...
  • 42 篇 liu tairan
  • 39 篇 mengu deniz
  • 35 篇 ayman el-baz
  • 34 篇 luo yi
  • 34 篇 zhang yijie
  • 32 篇 li yuhang
  • 32 篇 yang xilin
  • 31 篇 yair rivenson
  • 31 篇 el-baz ayman
  • 31 篇 gan tianyi
  • 29 篇 ghazal mohammed
  • 29 篇 jingxi li
  • 27 篇 huang luzhe

语言

  • 2,016 篇 英文
  • 90 篇 其他
  • 24 篇 中文
检索条件"机构=Department of Electrical and Computer Engineering and Bioengineering"
2132 条 记 录,以下是321-330 订阅
排序:
Huygens Principle-based Microwave Brain Imaging through Finite Difference Time Domain
Huygens Principle-based Microwave Brain Imaging through Fini...
收藏 引用
IEEE Conference on Antenna Measurements & Applications (CAMA)
作者: Moein Movafagh Navid Ghavami Gianluigi Tiberi Sandra Dudley Hideki Ochiai Mohammad Ghavami School of Engineering London South Bank University London UK UK Division UBT London UK UBT - Umbria Bioengineering Technologies Perugia Italy Department of Electrical and Computer Engineering Yokohama National University Japan
This paper investigates the application of Huygens principle (HP) in brain imaging. We employ simulation techniques, specifically the Finite Difference Time Domain (FDTD) method, in order to comprehensively evaluate t...
来源: 评论
RemInD: Remembering Anatomical Variations for Interpretable Domain Adaptive Medical Image Segmentation
arXiv
收藏 引用
arXiv 2025年
作者: Wang, Xin Guo, Yin Zhang, Kaiyu Balu, Niranjan Mossa-Basha, Mahmud Shapiro, Linda Yuan, Chun Department of Electrical and Computer Engineering University of Washington Seattle United States Department of Bioengineering University of Washington Seattle United States Vascular Imaging Lab Department of Radiology University of Washington Seattle United States Paul G. Allen School of Computer Science and Engineering University of Washington Seattle United States Department of Radiology and Imaging Sciences University of Utah Salt Lake City United States
This work presents a novel Bayesian framework for unsupervised domain adaptation (UDA) in medical image segmentation. While prior works have explored this clinically significant task using various strategies of domain... 详细信息
来源: 评论
Learning Disentangled Representation for Multidimensional MR Image Reconstruction
Learning Disentangled Representation for Multidimensional MR...
收藏 引用
Annual International Conference of the IEEE engineering in Medicine and Biology Society (EMBC)
作者: Ruiyang Zhao Zepeng Wang Fan Lam Department of Electrical and Computer Engineering University of Illinois Urbana-Champaign Urbana IL USA Beckman Institute for Advanced Science and Technology University of Illinois Urbana-Champaign Urbana IL USA Department of Bioengineering University of Illinois Urbana-Champaign Urbana IL USA
We proposed a new way to represent and reconstruct multidimensional MR images. Specifically, a representation capable of disentangling different types of features in high-dimensional images was learned via training an... 详细信息
来源: 评论
Virtual staining-based diagnosis of organ transplant rejection
Virtual staining-based diagnosis of organ transplant rejecti...
收藏 引用
2024 Conference on Lasers and Electro-Optics, CLEO 2024
作者: Li, Yuzhu Pillar, Nir Liu, Tairan Ma, Guangdong de Haan, Kevin Zhang, Yijie Correa, Adrian J. Wu, Yulun Bai, Bijie Yang, Xilin Qi, Yuxuan Wallace, William Dean Ozcan, Aydogan Electrical and Computer Engineering Department University of California Los AngelesCA90095 United States Bioengineering Department University of California Los AngelesCA90095 United States University of California Los AngelesCA90095 United States School of Physics Xi'an Jiaotong University Shaanxi Xi'an710049 China Department of Pathology Keck School of Medicine University of Southern California Los AngelesCA90033 United States Department of Mathematics University of California Los AngelesCA90095 United States Computer Science Department University of California Los AngelesCA90095 United States Department of Surgery University of California Los AngelesCA90095 United States
We present deep learning-based virtual staining of unlabeled lung and heart tissue sections to diagnose organ transplant rejection, achieving comparable diagnostic accuracy to histochemical staining methods, while sig... 详细信息
来源: 评论
GENIE-NF-AI: Identifying Neurofibromatosis Tumors using Liquid Neural Network (LTC) trained on AACR Genie Datasets
arXiv
收藏 引用
arXiv 2023年
作者: Bidollahkhani, Michael Atasoy, Ferhat Abedini, Elnaz Davar, Ali Hamza, Omid Sefaoğlu, Fırat Jafari, Amin Yalçın, Muhammed Nadir Abdellatef, Hamdan Department of Computer Engineering Institute of Graduate Studies Karabuk University Turkey Göttingen Germany Department of Biomedical Engineering Institute of Graduate Studies Karabuk University Turkey Department of Genetics and Bioengineering Faculty of Engineering and Architecture Kastamonu University Turkey Department of Medical Science Faculty of Medicine Karabuk University Turkey Department of Electrical and Computer Engineering Lebanese American University Byblos Lebanon
In recent years, the field of medicine has been increasingly adopting artificial intelligence (AI) technologies to provide faster and more accurate disease detection, prediction, and assessment. In this study, we prop... 详细信息
来源: 评论
Multiplane Quantitative Phase Imaging Using a Wavelength-Multiplexed Diffractive Optical Processor
arXiv
收藏 引用
arXiv 2024年
作者: Shen, Che-Yung Li, Jingxi Gan, Tianyi Li, Yuhang Bai, Langxing Jarrahi, Mona Ozcan, Aydogan Electrical and Computer Engineering Department University of California Los AngelesCA90095 United States Bioengineering Department University of California Los AngelesCA90095 United States University of California Los AngelesCA90095 United States Department of Computer Science University of California Los AngelesCA90095 United States
Quantitative phase imaging (QPI) is a label-free technique that provides optical path length information for transparent specimens, finding utility in biology, materials science, and engineering. Here, we present quan... 详细信息
来源: 评论
Inference-Enabled Mental Stress Tracking Via Multi-Modal Wearable Physiological Sensing: A Proof-of-Concept Study
SSRN
收藏 引用
SSRN 2023年
作者: Zhou, Yuanyuan Mousavi, Azin S. Chalumuri, Yekanth R. Parreira, Jesse D. Modak, Mihir Sanchez-Perez, Jesus Antonio Gazi, Asim H. Inan, Omer T. Hahn, Jin-Oh Department of Mechanical Engineering University of Maryland College ParkMD United States Department of Bioengineering University of Maryland College ParkMD United States School of Electrical and Computer Engineering Georgia Institute of Technology AtlantaGA United States
Objective: To develop a novel mental stress tracking algorithm that can infer mental stress state from multi-modal digital signatures of physiological parameters compatible with wearable-enabled sensing. Methods: We d... 详细信息
来源: 评论
Virtual staining-based diagnosis of organ transplant rejection
Virtual staining-based diagnosis of organ transplant rejecti...
收藏 引用
CLEO: Applications and Technology in CLEO 2024, CLEO: A and T 2024 - Part of Conference on Lasers and Electro-Optics
作者: Li, Yuzhu Pillar, Nir Liu, Tairan Ma, Guangdong de Haan, Kevin Zhang, Yijie Correa, Adrian J. Wu, Yulun Bai, Bijie Yang, Xilin Qi, Yuxuan Wallace, William Dean Ozcan, Aydogan Electrical and Computer Engineering Department University of California Los AngelesCA90095 United States Bioengineering Department University of California Los AngelesCA90095 United States University of California Los AngelesCA90095 United States School of Physics Xi'an Jiaotong University Shaanxi Xi'an710049 China Department of Pathology Keck School of Medicine University of Southern California Los AngelesCA90033 United States Department of Mathematics University of California Los AngelesCA90095 United States Computer Science Department University of California Los AngelesCA90095 United States Department of Surgery University of California Los AngelesCA90095 United States
We present deep learning-based virtual staining of unlabeled lung and heart tissue sections to diagnose organ transplant rejection, achieving comparable diagnostic accuracy to histochemical staining methods, while sig... 详细信息
来源: 评论
Prior-guided Diffusion Model for Cell Segmentation in Quantitative Phase Imaging
arXiv
收藏 引用
arXiv 2024年
作者: Shao, Zhuchen Anastasio, Mark A. Li, Hua University of Illinois Urbana-Champaign Department of Electrical and Computer Engineering UrbanaIL United States University of Illinois Urbana-Champaign Department of Bioengineering UrbanaIL United States Washington University School of Medicine Department of Radiation Oncology Saint LouisMO United States
Purpose: Quantitative phase imaging (QPI) is a label-free technique that provides high-contrast images of tissues and cells without the use of chemicals or dyes. Accurate semantic segmentation of cells in QPI is essen... 详细信息
来源: 评论
Stain-free, rapid, and automated viral plaque assay using time-lapse holographic imaging and deep learning
Stain-free, rapid, and automated viral plaque assay using ti...
收藏 引用
Frontiers in Optics + Laser Science 2023, FiO, LS 203: Part of Frontiers in Optics + Laser Science 2023
作者: Li, Yuzhu Liu, Tairan Koydemir, Hatice Ceylan Zhang, Yijie Yang, Ethan Eryilmaz, Merve Wang, Hongda Li, Jingxi Bai, Bijie Ma, Guangdong Ozcan, Aydogan Electrical and Computer Engineering Department University of California Los AngelesCA90095 United States Bioengineering Department University of California Los Angeles90095 United States University of California Los AngelesCA90095 United States Department of Biomedical Engineering Texas A&M University College StationTX77843 United States Center for Remote Health Technologies and Systems Texas A&M University College StationTX77843 United States Department of Mathematics University of California Los AngelesCA90095 United States
We report a rapid and automated viral plaque assay using time-lapse holographic imaging and deep learning, significantly reducing the detection time needed for traditional viral plaque assays and entirely eliminating ... 详细信息
来源: 评论