AC optimal power flow (AC OPF) is a fundamental problem in power system operations. Accurately modeling the network physics via the AC power flow equations makes AC OPF a challenging nonconvex problem. To search for g...
详细信息
The offering strategy of energy storage in energy and frequency response(FR) markets needs to account for country-specific market regulations around FR products as well as FR utilization factors, which are highly unce...
详细信息
The offering strategy of energy storage in energy and frequency response(FR) markets needs to account for country-specific market regulations around FR products as well as FR utilization factors, which are highly uncertain. To this end, a novel optimal offering model is proposed for stand-alone price-taking storage participants, which accounts for recent FR market design developments in the UK, namely the trade of FR products in time blocks, and the mutual exclusivity among the multiple FR products. The model consists of a day-ahead stage, devising optimal offers under uncertainty, and a real-time stage, representing the storage operation after uncertainty is materialized. Furthermore, a concrete methodological framework is developed for comparing different approaches around the anticipation of uncertain FR utilization factors(deterministic one based on expected values, deterministic one based on worst-case values, stochastic one, and robust one), by providing four alternative formulations for the real-time stage of the proposed offering model, and carrying out an out-of-sample validation of the four model instances. Finally, case studies employing real data from UK energy and FR markets compare these four instances against achieved profits, FR delivery violations, and computational scalability.
In industrial inspection, the detection of surface defects—such as scratches, dents, or other defects—is crucial for ensuring product quality. However, the limited availability of annotated images of such defects po...
详细信息
On the whole, the present microgrid constitutes numerous actors in highly decentralized environments and liberalized electricity markets. The networked microgrid system must be capable of detecting electricity price c...
详细信息
The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boo...
详细信息
The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boost converter is developed to provide the necessary output voltage and power while accommodating variations in input sources. This converter is specifically designed for the efficient usage of renewable energy. The proposed architecture integrates three separate unidirectional input power sources: photovoltaics, fuel cells, and storage system batteries. The architecture has five switches, and the implementation of each switch in the converter is achieved by applying the calculated duty ratios in various operating states. The closed-loop response of the converter with a proportional-integral (PI) controller-based switching system is examined by analyzing the Matlab-Simulink model utilizing a proportional-integral derivative (PID) tuner. The controller can deliver the desired output voltage of 400 V and an average power of 2 kW while exhibiting low switching transient effects. Therefore, the proposed multi-input interleaved boost converter demonstrates robust results for real-time applications by effectively harnessing renewable power sources.
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high d...
详细信息
In this paper,we analyze a hybrid Heterogeneous Cellular Network(HCNet)framework by deploying millimeter Wave(mmWave)small cells with coexisting traditional sub-6GHz macro cells to achieve improved coverage and high data *** consider randomly-deployed macro base stations throughout the network whereas mmWave Small Base Stations(SBSs)are deployed in the areas with high User Equipment(UE)*** user centric deployment of mmWave SBSs inevitably incurs correlation between UE and *** a realistic scenario where the UEs are distributed according to Poisson cluster process and directional beamforming with line-of-sight and non-line-of-sight transmissions is adopted for mmWave *** using tools from stochastic geometry,we develop an analytical framework to analyze various performance metrics in the downlink hybrid HCNets under biased received power *** UE clustering we considered Thomas cluster process and derive expressions for the association probability,coverage probability,area spectral efficiency,and energy *** also provide Monte Carlo simulation results to validate the accuracy of the derived ***,we analyze the impact of mmWave operating frequency,antenna gain,small cell biasing,and BSs density to get useful engineering insights into the performance of hybrid mmWave *** results show that network performance is significantly improved by deploying millimeter wave SBS instead of microwave BS in hot spots.
Most research works nowadays deal with real-time Internetof Things (IoT) data. However, with exponential data volume increases,organizations need help storing such humongous amounts of IoT data incloud storage systems...
详细信息
Most research works nowadays deal with real-time Internetof Things (IoT) data. However, with exponential data volume increases,organizations need help storing such humongous amounts of IoT data incloud storage systems. Moreover, such systems create security issues whileefficiently using IoT and Cloud Computing technologies. Ciphertext-Policy Attribute-Based Encryption (CP-ABE) has the potential to make IoT datamore secure and reliable in various cloud storage services. Cloud-assisted IoTssuffer from two privacy issues: access policies (public) and super polynomialdecryption times (attributed mainly to complex access structures). We havedeveloped a CP-ABE scheme in alignment with a Hidden HierarchyCiphertext-Policy Attribute-Based Encryption (HH-CP-ABE) access structure embedded within two policies, i.e., public policy and sensitive *** this proposed scheme, information is only revealed when the user’sinformation is satisfactory to the public policy. Furthermore, the proposedscheme applies to resource-constrained devices already contracted tasks totrusted servers (especially encryption/decryption/searching). Implementingthe method and keywords search resulted in higher access policy privacy andincreased security. The new scheme introduces superior storage in comparisonto existing systems (CP-ABE, H-CP-ABE), while also decreasing storage costsin HH-CP-ABE. Furthermore, a reduction in time for key generation canalso be ***, the scheme proved secure, even in handling IoT datathreats in the Decisional Bilinear Diffie-Hellman (DBDH) case.
Photovoltaic(PV)inverter,as a promising voltage/var control(VVC)resource,can supply flexible reactive power to reduce microgrid power loss and regulate bus ***,active power plays a significant role in microgrid voltag...
详细信息
Photovoltaic(PV)inverter,as a promising voltage/var control(VVC)resource,can supply flexible reactive power to reduce microgrid power loss and regulate bus ***,active power plays a significant role in microgrid voltage ***-based demand response(PBDR)can shift load demand via determining time-varying prices,which can be regarded as an effective means for active power ***,due to the different characteristics,PBDR and inverter-based VVC lack systematic ***,this paper proposes a PBDR-supported three-stage hierarchically coordinated voltage control method,including day-ahead PBDR price scheduling,hour-ahead reactive power dispatch of PV inverters,and realtime local droop control of PV *** their mutual influence,a stochastic optimization method is utilized to centrally or hierarchically coordinate adjacent two *** solve the bilinear constraints of droop control function,the problem is reformulated into a second-order cone programming relaxation ***,the concave constraints are convexified,forming a penalty convex-concave model for feasible solution ***,a convex-concave procedure-based solution algorithm is proposed to iteratively solve the penalty *** proposed method is tested on 33-bus and IEEE 123-bus distribution networks and compared with other *** results verify the high efficiency of the proposed method to achieve power loss reduction and voltage regulation.
Effective medium theory(EMT)has been widely applied in material science,electromagnetics and photonics to determine the effective material properties for inhomogeneous composites comprising subwavelength *** versatili...
详细信息
Effective medium theory(EMT)has been widely applied in material science,electromagnetics and photonics to determine the effective material properties for inhomogeneous composites comprising subwavelength *** versatility of this foundational approach has been established through its application in classical Maxwell-Garnet models,which encompass relatively simple structures。
Purpose: Ultrasound (US) elastography is a technique for non-invasive quantification of material properties, such as stiffness, from ultrasound images of deforming tissue. The material properties are calculated by sol...
详细信息
Purpose: Ultrasound (US) elastography is a technique for non-invasive quantification of material properties, such as stiffness, from ultrasound images of deforming tissue. The material properties are calculated by solving the inverse problem on the measured displacement field from the ultrasound images. The limitations of traditional inverse problem techniques in US elastography are either slow and computationally intensive (iterative techniques) or sensitive to measurement noise and dependent on full displacement field data (direct techniques). Thus, we develop and validate a deep learning approach for solving the inverse problem in US elastography. This involves recovering the spatial modulus distribution of the elastic modulus from one component of the US-measured displacement field. Approach: We present a U-Net-based deep learning neural network to address the inverse problem in ultrasound elastography. This approach diverges from traditional methods by focusing on a data-driven model. The neural network is trained using data generated from a forward finite element model. This simulation incorporates variations in the displacement fields that correspond to the elastic modulus distribution, allowing the network to learn without the need for extensive real-world measurement data. The inverse problem of predicting the modulus spatial distribution from ultrasound-measured displacement fields is addressed using a trained neural network. The neural network is evaluated with mean squared error (MSE) and mean absolute percentage error (MAPE) metrics. To extend our model to practical purposes, we conduct phantom experiments and also apply our model to clinical data. Results: Our simulated results indicate that our deep learning (DL) model effectively reconstructs modulus distributions, as evidenced by low MSE and MAPE evaluation metrics. We obtain a mean MAPE of 0.32% for a hard inclusion and 0.39% for a soft inclusion. Similarly, in our phantom studies, the predicted mo
暂无评论