Deep learning has been broadly applied to imaging in scattering applications.A common framework is to train a descattering network for image recovery by removing scattering *** achieve the best results on a broad spec...
详细信息
Deep learning has been broadly applied to imaging in scattering applications.A common framework is to train a descattering network for image recovery by removing scattering *** achieve the best results on a broad spectrum of scattering conditions,individual“expert”networks need to be trained for each ***,the expert’s performance sharply degrades when the testing condition differs from the *** alternative brute-force approach is to train a“generalist”network using data from diverse scattering *** generally requires a larger network to encapsulate the diversity in the data and a sufficiently large training set to avoid ***,we propose an adaptive learning framework,termed dynamic synthesis network(DSN),which dynamically adjusts the model weights and adapts to different scattering *** adaptability is achieved by a novel“mixture of experts”architecture that enables dynamically synthesizing a network by blending multiple experts using a gating *** demonstrate the DSN in holographic 3D particle imaging for a variety of scattering *** show in simulation that our DSN provides generalization across a continuum of scattering *** addition,we show that by training the DSN entirely on simulated data,the network can generalize to experiments and achieve robust 3D *** expect the same concept can find many other applications,such as denoising and imaging in scattering ***,our dynamic synthesis framework opens up a new paradigm for designing highly adaptive deep learning and computational imaging techniques.
Community detection is a valuable tool for studying the function and dynamic structure of most real-world networks. Existing techniques either concentrate on the network's topological structure or node properties ...
详细信息
Phishing is one of the most important security threats in modern information systems causing different levels of damages to end-users and service providers such as financial and reputational losses. State-of-the-art a...
详细信息
Purpose: Potassium imbalance, often symptomless but potentially fatal, is prevalent in patients with kidney or heart conditions. Traditional laboratory tests for potassium measurement are costly and require skilled te...
详细信息
Since gastric cancer is growing fast, accurate and prompt diagnosis is essential, utilizing computer-aided diagnosis (CAD) systems is an efficient way to achieve this goal. Using methods related to computer vision ena...
详细信息
Since gastric cancer is growing fast, accurate and prompt diagnosis is essential, utilizing computer-aided diagnosis (CAD) systems is an efficient way to achieve this goal. Using methods related to computer vision enables more accurate predictions and faster diagnosis, leading to timely treatment. CAD systems can categorize photos effectively using deep learning techniques based on image analysis and classification. Accurate and timely classification of histopathology images is critical for enabling immediate treatment strategies, but remains challenging. We propose a hybrid deep learning and gradient-boosting approach that achieves high accuracy in classifying gastric histopathology images. This approach examines two classifiers for six networks known as pre-trained models to extract features. Extracted features will be fed to the classifiers separately. The inputs are gastric histopathological images. The GasHisSDB dataset provides these inputs containing histopathology gastric images in three 80px, 120px, and 160px cropping sizes. According to these achievements and experiments, we proposed the final method, which combines the EfficientNetV2B0 model to extract features from the images and then classify them using the CatBoost classifier. The results based on the accuracy score are 89.7%, 93.1%, and 93.9% in 80px, 120px, and 160px cropping sizes, respectively. Additional metrics including precision, recall, and F1-scores were above 0.9, demonstrating strong performance across various evaluation criteria. In another way, to approve and see the model efficiency, the GradCAM algorithm was implemented. Visualization via Grad-CAM illustrated discriminative regions identified by the model, confirming focused learning on histologically relevant features. The consistent accuracy and reliable detections across diverse evaluation metrics substantiate the robustness of the proposed deep learning and gradient-boosting approach for gastric cancer screening from histopathology
Domain-specific HWACC-rich platforms blend high performance and efficiency presenting an opportunity to recover nonrecurring engineering costs through wider deployment for many applications. However, the design of suc...
详细信息
Although conventional control systems are simple and widely used, they may not be effective for complex and uncertain systems. This study proposes a Hermite broad-learning recurrent neural network (HBRNN) with a wide ...
详细信息
The variability of the output power of distributed renewable energy sources(DRESs)that originate from the fastchanging climatic conditions can negatively affect the grid ***,grid operators have incorporated ramp-rate ...
详细信息
The variability of the output power of distributed renewable energy sources(DRESs)that originate from the fastchanging climatic conditions can negatively affect the grid ***,grid operators have incorporated ramp-rate limitations(RRLs)for the injected DRES power in the grid *** the DRES penetration levels increase,the mitigation of high-power ramps is no longer considered as a system support function but rather an ancillary service(AS).Energy storage systems(ESSs)coordinated by RR control algorithms are often applied to mitigate these power ***,no unified definition of active power ramps,which is essential to treat the RRL as AS,currently *** paper assesses the various definitions for ramp-rate RR and proposes RRL method control for a central battery ESS(BESS)in distribution systems(DSs).The ultimate objective is to restrain high-power ramps at the distribution transformer level so that RRL can be traded as AS to the upstream transmission system(TS).The proposed control is based on the direct control of theΔP/Δt,which means that the control parameters are directly correlated with the RR requirements included in the grid *** addition,a novel method for restoring the state of charge(So C)within a specific range following a high ramp-up/down event is ***,a parametric method for estimating the sizing of central BESSs(BESS sizing for short)is *** BESS sizing is determined by considering the RR requirements,the DRES units,and the load mix of the examined *** BESS sizing is directly related to the constant RR achieved using the proposed ***,the proposed methodologies are validated through simulations in MATLAB/Simulink and laboratory tests in a commercially available BESS.
This paper presents a chopper-stabilized three-stage operational amplifier (OpAmp) with a unity gain bandwidth of 69 MHz and an input referred noise density of 3 nV√Hz. The proposed design achieves a stable unity gai...
详细信息
Medical experts are utilizing neuroimaging and clinical assessments to enhance the early identification of Parkinson's disease. The current research initiative offers ways to identify Parkinson's disease using...
详细信息
Medical experts are utilizing neuroimaging and clinical assessments to enhance the early identification of Parkinson's disease. The current research initiative offers ways to identify Parkinson's disease using machine learning and transfer learning. To carry out this, we extracted 7500 MRI images from 2022 and 2023 and 12 clinical assessment records from 2010 to 2023 from the well-known Parkinson's Progression Marker Initiative (PPMI) database. Then, we applied machine and transfer learning approaches using clinical assessment records and MRI images, respectively. To identify Parkinson's Disease (PD) using samples from clinical assessments, four distinct resampling techniques were employed. Subsequently, three machine learning models were applied to train on these resample records, and the recall score was analyzed. A hybrid of SMOTE and ENN proved to be the most effective approach for handling all of the imbalanced data, according to the recall study. Later, four different feature selection methods were used to find the top 10 features using these new samples. Lastly, we trained and validated the model using nine machine-learning algorithms. We also used explainable AI techniques like LIME and SHAP to interpret clinical assessment records. The extra tree classifier outperformed the others in terms of accuracy, reaching 98.44% using the tree-based feature selection technique. In addition to examining clinical assessment samples, this study investigated Parkinson's disease using neuroimaging data. In pursuit of this objective, four pre-trained architectures were employed to analyze MRI images through two distinct approaches. The first approach involved utilizing the convolutional layer while replacing the remaining two layers with a customized Artificial Neural Network (ANN). Subsequently, training and evaluation are performed using our MRI samples, followed by analyzing significant weights using a LIME interpretable explainer. The second approach employs an improvis
暂无评论