Optical imaging is the gold standard for visualizing the structure and function of biological tissue. Non-invasive imaging methods can only reach a limited depth while providing a high spatial resolution. On the other...
详细信息
A novel e-Gear selector single-electrode-based triboelectric nanogenerator (TENG) was successfully designed, fabricated, and tested on flexible substrates. The proposed device consists of four TENG sensors representin...
详细信息
Bi-level optimization methods in machine learning are popularly effective in subdomains of neural architecture search, data re-weighting, etc. However, most of these methods do not factor in variations in learning dif...
详细信息
The ultra-dense network (UDN) concept with multi-connectivity (MC) has emerged as a promising scenario for millimeter-wave (mmWave) communications due to its synergistic effect. However, mmWave UDNs with MC face chall...
详细信息
The rapid advancements in artificial intelligence (AI) and machine learning (ML) have significantly enhanced progress in computer vision, opening doors to innovative technological possibilities and enabling a range of...
详细信息
electrical system planning of the large-scale offshore wind farm is usually based on N-1 security for equipment lectotype. However, in this method, owing to the aggregation effect in large-scale offshore wind farms, o...
详细信息
electrical system planning of the large-scale offshore wind farm is usually based on N-1 security for equipment lectotype. However, in this method, owing to the aggregation effect in large-scale offshore wind farms, offshore electrical equipment operates under low load for long periods, thus wasting resources. In this paper, we propose a method for electrical system planning of the large-scale offshore wind farm based on the N+ design. A planning model based on the power-limited operation of wind turbines under the N+ design is constructed, and a solution is derived with the optimization of the upper power limits of wind turbines. A comprehensive evaluation and game analysis of the economy, risk of wind abandonment, and environmental sustainability of the planned offshore electrical systems have been conducted. Moreover, the planning of an infield collector system, substation, and transmission system of an offshore electrical system based on the N+ design is integrated. For a domestic offshore wind farm, evaluation results show that the proposed planning method can improve the efficiency of wind energy utilization while greatly reducing the investment cost of the electrical system.
This article addresses the velocity-free predefined-time consensus tracking for multiagent systems (MASs) with input and output quantization via adaptive sliding mode control (SMC). First, a distributed predefined-tim...
详细信息
Background: The population of Fontan patients, patients born with a single functioningventricle, is growing. There is a growing need to develop algorithms for this population that can predicthealth outcomes. Artiffcia...
详细信息
Background: The population of Fontan patients, patients born with a single functioningventricle, is growing. There is a growing need to develop algorithms for this population that can predicthealth outcomes. Artiffcial intelligence models predicting short-term and long-term health outcomes forpatients with the Fontan circulation are needed. Generative adversarial networks (GANs) provide a solutionfor generating realistic and useful synthetic data that can be used to train such models. Methods: Despitetheir promise, GANs have not been widely adopted in the congenital heart disease research communitydue, in some part, to a lack of knowledge on how to employ them. In this research study, a GAN was usedto generate synthetic data from the Pediatric Heart Network Fontan I dataset. A subset of data consistingof the echocardiographic and BNP measures collected from Fontan patients was used to train the *** sets of synthetic data were created to understand the effect of data missingness on synthetic datageneration. Synthetic data was created from real data in which the missing values were imputed usingMultiple Imputation by Chained Equations (MICE) (referred to as synthetic from imputed real samples). Inaddition, synthetic data was created from real data in which the missing values were dropped (referred to assynthetic from dropped real samples). Both synthetic datasets were evaluated for ffdelity by using visualmethods which involved comparing histograms and principal component analysis (PCA) plots. Fidelitywas measured quantitatively by (1) comparing synthetic and real data using the Kolmogorov-Smirnovtest to evaluate the similarity between two distributions and (2) training a neural network to distinguishbetween real and synthetic samples. Both synthetic datasets were evaluated for utility by training aneural network with synthetic data and testing the neural network on its ability to classify patients thathave ventricular dysfunction using echocardiograph measures an
The Nong Han Chaloem Phrakiat Lotus Park is a tourist attraction and a source of learning regarding lotus ***,as a training area,it lacks appeal and learning motivation due to its conventional presentation of informat...
详细信息
The Nong Han Chaloem Phrakiat Lotus Park is a tourist attraction and a source of learning regarding lotus ***,as a training area,it lacks appeal and learning motivation due to its conventional presentation of information regarding lotus *** current study introduced the concept of smart learning in this setting to increase interest and motivation for *** neural networks(CNNs)were used for the classification of lotus plant species,for use in the development of a mobile application to display details about each *** scope of the study was to classify 11 species of lotus plants using the proposed CNN model based on different techniques(augmentation,dropout,and L2)and hyper parameters(dropout and epoch number).The expected outcome was to obtain a high-performance CNN model with reduced total parameters compared to using three different pre-trained CNN models(Inception V3,VGG16,and VGG19)as *** performance of the model was presented in terms of accuracy,F1-score,precision,and recall *** results showed that the CNN model with the augmentation,dropout,and L2 techniques at a dropout value of 0.4 and an epoch number of 30 provided the highest testing accuracy of *** best proposed model was more accurate than the pre-trained CNN models,especially compared to Inception *** addition,the number of total parameters was reduced by approximately 1.80–2.19 *** findings demonstrated that the proposed model with a small number of total parameters had a satisfactory degree of classification accuracy.
Diffractive Deep Neural Network enables computer-free,all-optical“computational imaging”for seeing through unknown random diffusers at the speed of light.
Diffractive Deep Neural Network enables computer-free,all-optical“computational imaging”for seeing through unknown random diffusers at the speed of light.
暂无评论