VPNs are vital for safeguarding communication routes in the continually changing cybersecurity ***,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeV...
详细信息
VPNs are vital for safeguarding communication routes in the continually changing cybersecurity ***,increasing network attack complexity and variety require increasingly advanced algorithms to recognize and categorizeVPNnetwork *** present a novelVPNnetwork traffic flowclassificationmethod utilizing Artificial Neural Networks(ANN).This paper aims to provide a reliable system that can identify a virtual private network(VPN)traffic fromintrusion attempts,data exfiltration,and denial-of-service *** compile a broad dataset of labeled VPN traffic flows from various apps and usage ***,we create an ANN architecture that can handle encrypted communication and distinguish benign from dangerous *** effectively process and categorize encrypted packets,the neural network model has input,hidden,and output *** use advanced feature extraction approaches to improve the ANN’s classification accuracy by leveraging network traffic’s statistical and behavioral *** also use cutting-edge optimizationmethods to optimize network characteristics and *** suggested ANN-based categorization method is extensively tested and *** show the model effectively classifies VPN traffic *** also show that our ANN-based technique outperforms other approaches in precision,recall,and F1-score with 98.79%*** study improves VPN security and protects against new *** VPNtraffic flows effectively helps enterprises protect sensitive data,maintain network integrity,and respond quickly to security *** study advances network security and lays the groundwork for ANN-based cybersecurity solutions.
The droop-free control adopted in microgrids has been designed to cope with global power-sharing goals,i.e.,sharing disturbance mitigation among all controllable assets to even their ***,limited by neighboring communi...
详细信息
The droop-free control adopted in microgrids has been designed to cope with global power-sharing goals,i.e.,sharing disturbance mitigation among all controllable assets to even their ***,limited by neighboring communication,the time-consuming peer-to-peer coordination of the droopfree control slows down the nodal convergence to global consensus,reducing the power-sharing efficiency as the number of nodes *** this end,this paper first proposes a local power-sharing droop-free control scheme to contain disturbances within nearby nodes,in order to reduce the number of nodes involved in the coordination and accelerate the convergence speed.A hybrid local-global power-sharing scheme is then put forward to leverage the merits of both schemes,which also enables the autonomous switching between local and global power-sharing modes according to the system *** guidance for key control parameter designs is derived via the optimal control methods,by optimizing the power-sharing distributions at the steady-state consensus as well as along the dynamic trajectory to *** system stability of the hybrid scheme is proved by the eigenvalue analysis and Lyapunov direct ***,simulation results validate that the proposed hybrid local-global power-sharing scheme performs stably against disturbances and achieves the expected control performance in local and global power-sharing modes as well as mode ***,compared with the classical global power-sharing scheme,the proposed scheme presents promising benefits in convergence speed and scalability.
Distance and size estimation of objects of interests is an inevitable task for many navigation and obstacle avoidance algorithms mainly used in autonomus and robotic systems. Stereo vision systems, inspired by human v...
详细信息
In analyzing phenomena around us, clustering is among the most commonly used techniques in machine learning for comparing, and categorizing them into different groups based on intrinsic features. One of the main chall...
详细信息
The increasing penetration of renewable energy resources with highly fluctuating outputs has placed increasing concern on the accuracy and timeliness of electric power system state estimation(SE).Meanwhile,we note tha...
详细信息
The increasing penetration of renewable energy resources with highly fluctuating outputs has placed increasing concern on the accuracy and timeliness of electric power system state estimation(SE).Meanwhile,we note that only a fraction of system states fluctuate at the millisecond level and require to be *** such,refreshing only those states with significant variation would enhance the computational efficiency of SE and make fast-continuous update of states ***,this is difficult to achieve with conventional SE methods,which generally refresh states of the entire system every 4–5 *** this context,we propose a local hybrid linear SE framework using stream processing,in which synchronized measurements received from phasor measurement units(PMUs),and trigger/timingmode measurements received from remote terminal units(RTUs)are used to update the associated local ***,the measurement update process efficiency and timeliness are enhanced by proposing a trigger measurement-based fast dynamic partitioning algorithm for determining the areas of the system with states requiring *** particular,non-iterative hybrid linear formulations with both RTUs and PMUs are employed to solve the local SE *** timeliness,accuracy,and computational efficiency of the proposed method are demonstrated by extensive simulations based on IEEE 118-,300-,and 2383-bus systems.
Accurate local temperature measurement at micro and nanoscales requires thermometry with high resolution because of ultra-low thermal *** the various methods for measuring temperature,optical techniques have shown the...
详细信息
Accurate local temperature measurement at micro and nanoscales requires thermometry with high resolution because of ultra-low thermal *** the various methods for measuring temperature,optical techniques have shown the most precise temperature detection,with resolutions reaching(-10^(-9) K).In this work,we present a nanomechanical device with nano-Kelvin resolution(-10^(-9) K)at room temperature and 1 *** device uses a 20 nm thick silicon nitride(SiN)membrane,forming an air chamber as the sensing *** presented device has a temperature sensing area>1 mm^(2)for micro/nanoscale objects with reduced target placement constraints as the target can be placed anywhere on the>1 mm^(2)sensing *** temperature resolution of the SiN membrane device is determined by deflection at the center of the *** temperature resolution is inversely proportional to the membrane's stiffness,as detailed through analysis and measurements of stiffness and noise equivalent temperature(NET)in the pre-stressed SiN *** achievable heat flow resolution of the membrane device is 100 pW,making it suitable for examining thermal transport on micro and nanoscales.
The presence of long-range interactions is crucial in distinguishing between abstract complex networks and wave *** photonics,because electromagnetic interactions between optical elements generally decay rapidly with ...
详细信息
The presence of long-range interactions is crucial in distinguishing between abstract complex networks and wave *** photonics,because electromagnetic interactions between optical elements generally decay rapidly with spatial distance,most wave phenomena are modeled with neighboring interactions,which account for only a small part of conceptually possible ***,we explore the impact of substantial long-range interactions in topological *** demonstrate that a crystalline structure,characterized by long-range interactions in the absence of neighboring ones,can be interpreted as an overlapped *** overlap model facilitates the realization of higher values of topological invariants while maintaining bandgap width in photonic topological *** breaking of topology-bandgap tradeoff enables topologically protected multichannel signal processing with broad *** practically accessible system parameters,the result paves the way to the extension of topological physics to network science.
Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC ***,the variety of control modes and flexible bidirectional power flow complicate the influence of...
详细信息
Bidirectional interlinking converter(BIC)is the core equipment in a hybrid AC/DC microgrid connected between AC and DC ***,the variety of control modes and flexible bidirectional power flow complicate the influence of AC faults on BIC itself and on DC sub-grid,which potentially threaten both converter safety and system *** study first investigates AC fault influence on the BIC and DC bus voltage under different BIC control modes and different pre-fault operation states,by developing a mathematical model and equivalent sequence ***,based on the analysis results,a general accommodative current limiting strategy is proposed for BIC without limitations to specific mode or operation *** amplitude is predicted and constrained according to the critical requirements to protect the BIC and relieving the AC fault influence on the DC bus *** with conventional methods,potential current limit failure and distortions under asymmetric faults can also be ***,experiments verify feasibility of the proposed method.
This article introduces a novel approach to bolster the robustness of Deep Neural Network (DNN) models against adversarial attacks named "Targeted Adversarial Resilience Learning (TARL)". The initial ev...
详细信息
This study explores the potential of Mg/Carbon Nanotubes/Baghdadite composites as biomaterials for bone regeneration and repair while addressing the obstacles to their clinical *** powder was synthesized using the sol...
详细信息
This study explores the potential of Mg/Carbon Nanotubes/Baghdadite composites as biomaterials for bone regeneration and repair while addressing the obstacles to their clinical *** powder was synthesized using the sol-gel method to ensure a fine distribution within the Mg/CNTs ***/1.5 wt.%CNT composites were reinforced with BAG at weight fractions of 0.5,1.0,and 1.5 wt.%using spark plasma sintering at 450℃and 50 MPa after homogenization via ball *** cellular bioactivity of these nanocomposites was evaluated using human osteoblast-like cells and adipose-derived mesenchymal stromal *** proliferation and attachment of MG-63cells were assessed and visualized using the methylthiazol tetrazolium(MTT)assay and SEM,while AD-MSC differentiation was measured using alkaline phosphatase activity *** were also generated to visualize the diameter distributions of particles in SEM images using image processing *** Mg/CNTs/0.5 wt.%BAG composite demonstrated optimal mechanical properties,with compressive strength,yield strength,and fracture strain of 259.75 MPa,180.25 MPa,and 31.65%,*** learning models,including CNN,LSTM,and GRU,were employed to predict stress-strain relationships across varying BAG amounts,aiming to accurately model these curves without requiring extensive physical *** shown by contact angle measurements,enhanced hydrophilicity promoted better cell adhesion and ***,corrosion resistance improved with a higher BAG *** study concludes that Mg/CNTs composites reinforced with BAG concentrations below 1.0 wt.%offer promising biodegradable implant materials for orthopedic applications,featuring adequate load-bearing capacity and improved corrosion resistance.
暂无评论