This paper presents a machine-learning-based speedup strategy for real-time implementation of model-predictive-control(MPC)in emergency voltage stabilization of power *** success in various applications,real-time impl...
详细信息
This paper presents a machine-learning-based speedup strategy for real-time implementation of model-predictive-control(MPC)in emergency voltage stabilization of power *** success in various applications,real-time implementation of MPC in power systems has not been successful due to the online control computation time required for large-sized complex systems,and in power systems,the computation time exceeds the available decision time used in practice by a large *** long-standing problem is addressed here by developing a novel MPC-based framework that i)computes an optimal strategy for nominal loads in an offline setting and adapts it for real-time scenarios by successive online control corrections at each control instant utilizing the latest measurements,and ii)employs a machine-learning based approach for the prediction of voltage trajectory and its sensitivity to control inputs,thereby accelerating the overall control computation by multiple ***,a realistic control coordination scheme among static var compensators(SVC),load-shedding(LS),and load tap-changers(LTC)is presented that incorporates the practical delayed actions of the *** performance of the proposed scheme is validated for IEEE 9-bus and 39-bus systems,with±20%variations in nominal loading conditions together with *** show that our proposed methodology speeds up the online computation by 20-fold,bringing it down to a practically feasible value(fraction of a second),making the MPC real-time and feasible for power system control for the first time.
Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and ...
详细信息
Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries,especially in light of the growing number of cybersecurity threats.A major and everpresent threat is Ransomware-as-a-Service(RaaS)assaults,which enable even individuals with minimal technical knowledge to conduct ransomware *** study provides a new approach for RaaS attack detection which uses an ensemble of deep learning *** this purpose,the network intrusion detection dataset“UNSWNB15”from the Intelligent Security Group of the University of New South Wales,Australia is *** the initial phase,the rectified linear unit-,scaled exponential linear unit-,and exponential linear unit-based three separate Multi-Layer Perceptron(MLP)models are ***,using the combined predictive power of these three MLPs,the RansoDetect Fusion ensemble model is introduced in the suggested *** proposed ensemble technique outperforms previous studieswith impressive performance metrics results,including 98.79%accuracy and recall,98.85%precision,and 98.80%*** empirical results of this study validate the ensemble model’s ability to improve cybersecurity defenses by showing that it outperforms individual *** expanding the field of cybersecurity strategy,this research highlights the significance of combined deep learning models in strengthening intrusion detection systems against sophisticated cyber threats.
The progress in technology has provided opportunities for innovative solutions to intricate challenges. One possible method is employing reinforcement learning to model flying trajectories in intricate environments. G...
详细信息
ISBN:
(纸本)9798331530938
The progress in technology has provided opportunities for innovative solutions to intricate challenges. One possible method is employing reinforcement learning to model flying trajectories in intricate environments. Game development is a discipline that involves intricate reasoning and dynamic interplay between the user and the game environment. By employing several gaming engines, developers are now able to replicate real-life situations through the implementation of diverse machine learning methods. Aircraft simulation in game creation using reinforcement learning involves creating a visual depiction of real-life settings where aircraft may navigate complex environments without direct input from a human user. Currently, reinforcement learning is not widely applied in game development, particularly in simulation-based path finding techniques. This algorithm approaches possess the efficacy and capacity to generate sophisticated neural networks capable of directing an agent to do certain tasks. The aim of this project is to create aircraft simulations for game development by utilizing reinforcement-learning techniques, so that it can provide a foundational idea of the usage of this algorithm in path-detection based decision-making techniques. The goal is to demonstrate the effectiveness of reinforcement learning in a real-world scenario, where the aircraft independently assesses and selects its flying trajectory. The system will undergo testing in three distinct phases, involving the utilization of Blender3D, Unity 3D, and Anaconda prompts. The results will then be compared using TensorFlow. Several training sessions will be conducted in various environments using the Anaconda environment to optimize the outcomes. In the latter stages of development, a dynamic user interface will be implemented to enhance the user's experience. The method is anticipated to produce 152% improved AI-trained data, which can be utilized for constructing extensive simulation and game-proj
This paper considers a free space optical (FSO) cooperative network with an energy harvesting (EH) relay with no permanent power supply. The relay implements the harvest-store-use strategy and, in addition to the ener...
详细信息
To serve a convenient healthcare network, storing medical images and diagnosis records in the cloud is a straightforward solution. Encrypting the medical images before uploading them to the cloud is a trivial strategy...
详细信息
Pulsed current cathodic protection(PCCP) could be more effective than direct current cathodic protection(DCCP)for mitigating corrosion in buried structures in the oil and gas industries if appropriate pulsed parameter...
详细信息
Pulsed current cathodic protection(PCCP) could be more effective than direct current cathodic protection(DCCP)for mitigating corrosion in buried structures in the oil and gas industries if appropriate pulsed parameters are chosen. The purpose of this research is to present the corrosion prevention mechanism of the PCCP technique by taking into account the effects of duty cycle as well as frequency, modeling the relationships between pulse parameters(frequency and duty cycle) and system outputs(corrosion rate, protective current and pipe-to-soil potential) and finally identifying the most effective protection conditions over a wide range of frequency(2–10 kHz) and duty cycle(25%-75%). For this, pipe-to-soil potential, pH, current and power consumption, corrosion rate, surface deposits and investigation of pitting corrosion were taken into account. To model the input-output relationship in the PCCP method, a data-driven machine learning approach was used by training an artificial neural network(ANN). The results revealed that the PCCP system could yield the best protection conditions at 10 kHz frequency and 50% duty cycle, resulting in the longest protection length with the lowest corrosion rate at a consumption current 0.3 time that of the DCCP method. In the frequency range of 6–10 kHz and duty cycles of 50%-75%, SEM images indicated a uniform distribution of calcite deposits and no pits on cathode surface.
In late 2019, COVID-19 virus emerged as a dangerous disease that led to millions of fatalities and changed how human beings interact with each other and forced people to wear masks with mandatory lockdown. The ability...
详细信息
Computational approaches can speed up the drug discovery process by predicting drug-target affinity, otherwise it is time-consuming. In this study, we developed a convolutional neural network (CNN)-based model named S...
详细信息
Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing *** the popularity of ML techniques,only a...
详细信息
Over the past few years,the application and usage of Machine Learning(ML)techniques have increased exponentially due to continuously increasing the size of data and computing *** the popularity of ML techniques,only a few research studies have focused on the application of ML especially supervised learning techniques in Requirement engineering(RE)activities to solve the problems that occur in RE *** authors focus on the systematic mapping of past work to investigate those studies that focused on the application of supervised learning techniques in RE activities between the period of 2002–*** authors aim to investigate the research trends,main RE activities,ML algorithms,and data sources that were studied during this ***-five research studies were selected based on our exclusion and inclusion *** results show that the scientific community used 57 *** those algorithms,researchers mostly used the five following ML algorithms in RE activities:Decision Tree,Support Vector Machine,Naïve Bayes,K-nearest neighbour Classifier,and Random *** results show that researchers used these algorithms in eight major RE *** activities are requirements analysis,failure prediction,effort estimation,quality,traceability,business rules identification,content classification,and detection of problems in requirements written in natural *** selected research studies used 32 private and 41 public data *** most popular data sources that were detected in selected studies are the Metric Data Programme from NASA,Predictor Models in Software engineering,and iTrust Electronic Health Care System.
暂无评论