The rapid development of deep learning provides great convenience for production and ***,the massive labels required for training models limits further ***-shot learning which can obtain a high-performance model by le...
详细信息
The rapid development of deep learning provides great convenience for production and ***,the massive labels required for training models limits further ***-shot learning which can obtain a high-performance model by learning few samples in new tasks,providing a solution for many scenarios that lack *** paper summarizes few-shot learning algorithms in recent years and proposes a ***,we introduce the few-shot learning task and its ***,according to different implementation strategies,few-shot learning methods in recent years are divided into five categories,including data augmentation-based methods,metric learning-based methods,parameter optimization-based methods,external memory-based methods,and other ***,We investigate the application of few-shot learning methods and summarize them from three directions,including computer vision,human-machine language interaction,and robot ***,we analyze the existing few-shot learning methods by comparing evaluation results on mini Image Net,and summarize the whole paper.
Federated recommender systems(FedRecs) have garnered increasing attention recently, thanks to their privacypreserving benefits. However, the decentralized and open characteristics of current FedRecs present at least t...
详细信息
Federated recommender systems(FedRecs) have garnered increasing attention recently, thanks to their privacypreserving benefits. However, the decentralized and open characteristics of current FedRecs present at least two ***, the performance of FedRecs is compromised due to highly sparse on-device data for each client. Second, the system's robustness is undermined by the vulnerability to model poisoning attacks launched by malicious users. In this paper, we introduce a novel contrastive learning framework designed to fully leverage the client's sparse data through embedding augmentation, referred to as CL4FedRec. Unlike previous contrastive learning approaches in FedRecs that necessitate clients to share their private parameters, our CL4FedRec aligns with the basic FedRec learning protocol, ensuring compatibility with most existing FedRec implementations. We then evaluate the robustness of FedRecs equipped with CL4FedRec by subjecting it to several state-of-the-art model poisoning attacks. Surprisingly, our observations reveal that contrastive learning tends to exacerbate the vulnerability of FedRecs to these attacks. This is attributed to the enhanced embedding uniformity, making the polluted target item embedding easily proximate to popular items. Based on this insight, we propose an enhanced and robust version of CL4FedRec(rCL4FedRec) by introducing a regularizer to maintain the distance among item embeddings with different popularity levels. Extensive experiments conducted on four commonly used recommendation datasets demonstrate that rCL4FedRec significantly enhances both the model's performance and the robustness of FedRecs.
Human Activity Recognition (HAR) has become a significant area of study in the fields of health, human behavior analysis, the Internet of Things, and human–machine interaction in recent years. Smartphones are a popul...
详细信息
Time series anomaly detection is a technology that finds outliers in observed data over time, and is a significant research field associated with many applications or platforms. In this paper, we propose a method call...
详细信息
Brain tumor classification is essential for accurate diagnosis and treatment planning, significantly enhancing patient outcomes and survival rates. The complexity of multi-class classification, which includes Glioma, ...
详细信息
The solution of a sparse system of linear equations is ubiquitous in scientific applications. Iterative methods, such as the preconditioned conjugate gradient (PCG) method and the generalized minimal residuals (GMRES)...
详细信息
By replacing the exponential decay function in the circular Airy beam (CAB) with a super-Gaussian function, we propose a novel abruptly autofocusing beam, the circular super-Gaussian Airy beam (CSGAB). Similar to CAB,...
详细信息
This study presents a comprehensive optimization and comparative analysis of thermoelectric(TE)infrared(IR)detec-tors using Bi_(2)Te_(3) and Si *** theoretical modeling and numerical simulations,we explored the impact...
详细信息
This study presents a comprehensive optimization and comparative analysis of thermoelectric(TE)infrared(IR)detec-tors using Bi_(2)Te_(3) and Si *** theoretical modeling and numerical simulations,we explored the impact of TE mate-rial properties,device structure,and operating conditions on responsivity,detectivity,noise equivalent temperature difference(NETD),and noise equivalent power(NEP).Our study offers an optimally designed IR detector with responsivity and detectivity approaching 2×10^(5) V/W and 6×10^(9) cm∙Hz^(1/2)/W,*** enhancement is attributed to unique design features,includ-ing raised thermal collectors and long suspended thin thermoelectric wire sensing elements embedded in low thermal conductivity organic materials like ***,we demonstrate the compatibility of Bi_(2)Te_(3)-based detector fabrication pro-cesses with existing MEMS foundry processes,facilitating scalability and ***,for TE IR detectors,zT/κemerges as a critical parameter contrary to conventional TE material selection based solely on zT(where zT is the thermoelec-tric figure of merit andκis the thermal conductivity).
In recent decades, there has been a notable surge in interest surrounding visible light communication (VLC), which utilizes visible light as a means of transmission. LEDs have emerged as the preferred light source for...
详细信息
Extracting text from an image using a Visual Question Answering (VQA) system is an application at the intersection of computer vision and Natural Language Processing (NLP) to help blind people better view and comprehe...
详细信息
暂无评论