Considering the expansion of the Internet of Things (IoT) and the volume of data and user requests, Mobile Edge Computing (MEC) is considered a novel and efficient solution that puts decentralized servers at the netw...
详细信息
Automatic skin lesion subtyping is a crucial step for diagnosing and treating skin cancer and acts as a first level diagnostic aid for medical experts. Although, in general, deep learning is very effective in image pr...
详细信息
Automatic skin lesion subtyping is a crucial step for diagnosing and treating skin cancer and acts as a first level diagnostic aid for medical experts. Although, in general, deep learning is very effective in image processing tasks, there are notable areas of the processing pipeline in the dermoscopic image regime that can benefit from refinement. Our work identifies two such areas for improvement. First, most benchmark dermoscopic datasets for skin cancers and lesions are highly imbalanced due to the relative rarity and commonality in the occurrence of specific lesion types. Deep learning methods tend to exhibit biased performance in favor of the majority classes with such datasets, leading to poor generalization. Second, dermoscopic images can be associated with irrelevant information in the form of skin color, hair, veins, etc.;hence, limiting the information available to a neural network by retaining only relevant portions of an input image has been successful in prompting the network towards learning task-relevant features and thereby improving its performance. Hence, this research work augments the skin lesion characterization pipeline in the following ways. First, it balances the dataset to overcome sample size biases. Two balancing methods, synthetic minority oversampling TEchnique (SMOTE) and Reweighting, are applied, compared, and analyzed. Second, a lesion segmentation stage is introduced before classification, in addition to a preprocessing stage, to retain only the region of interest. A baseline segmentation approach based on Bi-Directional ConvLSTM U-Net is improved using conditional adversarial training for enhanced segmentation performance. Finally, the classification stage is implemented using EfficientNets, where the B2 variant is used to benchmark and choose between the balancing and segmentation techniques, and the architecture is then scaled through to B7 to analyze the performance boost in lesion classification. From these experiments, we find
Traditionally, conical ridge horn antennas are used for feeding large reflectors, but they can cause grating lobes in arrays. This paper introduces a compact Vivaldi antenna for monopulse radar, featuring a planar fee...
详细信息
Machine learning algorithms generally assume that the data are balanced in nature. However, medical datasets suffer from the curse of dimensionality and class imbalance problems. The medical datasets are obtained from...
详细信息
Machine learning algorithms generally assume that the data are balanced in nature. However, medical datasets suffer from the curse of dimensionality and class imbalance problems. The medical datasets are obtained from the patient information which creates an imbalance in class distribution as the number of normal persons is more than the number of patients and contains a large number of features to represent a sample. It tends to the machine learning algorithms biased toward the majority class which degrades their classification performance for minority class samples and increases the computation overhead. Therefore, oversampling, feature selection and feature weighting-based four strategies are proposed to deal with the problems of class imbalance and high dimensionality. The key idea behind the proposed strategies is to generate a balanced sample space along with the optimal weighted feature space of the most relevant and discriminative features. The Synthetic Minority Oversampling Technique is utilized to generate the synthetic minority class samples and reduce the bias toward the majority class. An Improved Elephant Herding Optimization algorithm is applied to select the optimal features and weights for reducing the computation overhead and improving the interpretation ability of the learning algorithms by providing weights to relevant features. In addition, thirteen methods are developed from the proposed strategies to deal with the problems of high-dimensionality and imbalanced data. The optimized k-Nearest Neighbor (k-NN) learning algorithm is utilized to perform classification. The performance of the proposed methods is evaluated and compared for sixteen high-dimensional imbalanced medical datasets. Further, Freidman’s mean rank test is applied to show the statistical difference between the proposed methods. Experimental and statistical results show that the proposed Feature Weighting followed by the Feature Selection (FW–FS) method performed significantly b
For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but faul...
详细信息
For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but fault tolerance and energy balancing gives equal importance for improving the network *** saving energy in WSNs,clustering is considered as one of the effective methods for Wireless Sensor *** of the excessive overload,more energy consumed by cluster heads(CHs)in a cluster based WSN to receive and aggregate the information from member sensor nodes and it leads to *** increasing the WSNs’lifetime,the CHs selection has played a key role in energy consumption for sensor *** Energy Efficient Unequal Fault Tolerant Clustering Approach(EEUFTC)is proposed for reducing the energy utilization through the intelligent methods like Particle Swarm Optimization(PSO).In this approach,an optimal Master Cluster Head(MCH)-Master data Aggregator(MDA),selection method is proposed which uses the fitness values and they evaluate based on the PSO for two optimal nodes in each cluster to act as Master Data Aggregator(MDA),and Master Cluster *** data from the cluster members collected by the chosen MCH exclusively and the MDA is used for collected data reception from MCH transmits to the ***,the MCH overhead *** the heavy communication of data,overhead controls using the scheduling of Energy-Efficient Time Division Multiple Access(EE-TDMA).To describe the proposed method superiority based on various performance metrics,simulation and results are compared to the existing methods.
The significant increase in civil aircraft traffic has led to frequent congestion and various negative outcomes within the terminal area. To mitigate these challenges, addressing and studying the aircraft landing prob...
详细信息
作者:
Xu, ZeliangKim, Dong InWoo, Simon S.
Department of Computer Science and Engineering Suwon16419 Korea Republic of
Department of Electrical and Computer Engineering Suwon16419 Korea Republic of
This paper proposes a novel cloud-edge collaborative distributed diffusion model for AI-generated content (AIGC) such as image generation, which integrates adaptive clustering techniques with dynamic step-size optimiz...
详细信息
An intelligent reflecting surface(IRS),or its various equivalents such as an reconfigurable intelligent surface(RIS), is an emerging technology to control radio signal propagation in wireless systems. An IRS is a digi...
An intelligent reflecting surface(IRS),or its various equivalents such as an reconfigurable intelligent surface(RIS), is an emerging technology to control radio signal propagation in wireless systems. An IRS is a digitally controlled metasurface consisting of a large number of passive reflecting elements, which are connected to a smart controller to enable dynamic adjustments of the amplitude and/or phase of the incident signal on each element independently [1].
With the advancements in voltage source converter(VSC)technology,VSC based high voltage direct current(VSCHVDC)systems provide system operators with a prospective approach to enhance system operating stability and ***...
详细信息
With the advancements in voltage source converter(VSC)technology,VSC based high voltage direct current(VSCHVDC)systems provide system operators with a prospective approach to enhance system operating stability and *** addition to long-distance transmission,the VSC-HVDC system can also provide multiple ancillary services,such as frequency regulation,due to its power ***,if a time delay exists in the control signal,the VSC-HVDC system may bring destabilizing influences to the system,which will decrease the system resilience under the *** order to reduce control deviation caused by time delay,in this paper,a small signal model is first conducted to analyze the impact of time delay on system *** a time-delay correction control strategy for HVDC frequency regulation control is developed to reduce the influence of the time *** control performance of the proposed time-delay correction control is verified both in the established small signal model and the runtime simulation in a modified IEEE 39 bus *** results indicate that the proposed time-delay correction control strategy shows significant improvement in system stability.
In recent years, airport runways have become a more critical bottleneck in airports, and it is very unusual to use only one runway to solve the Aircraft Landing Problem (ALP). The ALP includes the aircraft's landi...
详细信息
暂无评论