Let P be a set of points in the plane and let T be a maximum-weight spanning tree of P. For an edge (p, q), let Dpq be the diametral disk induced by (p, q), i.e., the disk having the segment pq as its diameter. Let DT...
详细信息
Federated learning (FL) is widely used in various fields because it can guarantee the privacy of the original data source. However, in data-sensitive fields such as Internet of Vehicles (IoV), insecure communication c...
详细信息
Federated learning (FL) is widely used in various fields because it can guarantee the privacy of the original data source. However, in data-sensitive fields such as Internet of Vehicles (IoV), insecure communication channels, semi-trusted RoadSide Unit (RSU), and collusion between vehicles and the RSU may lead to leakage of model parameters. Moreover, when aggregating data, since different vehicles usually have different computing resources, vehicles with relatively insufficient computing resources will affect the data aggregation efficiency. Therefore, in order to solve the privacy leakage problem and improve the data aggregation efficiency, this paper proposes a privacy-preserving data aggregation protocol for IoV with FL. Firstly, the protocol is designed based on methods such as shamir secret sharing scheme, pallier homomorphic encryption scheme and blinding factor protection, which can guarantee the privacy of model parameters. Secondly, the protocol improves the data aggregation efficiency by setting dynamic training time windows. Thirdly, the protocol reduces the frequent participations of Trusted Authority (TA) by optimizing the fault-tolerance mechanism. Finally, the security analysis proves that the proposed protocol is secure, and the performance analysis results also show that the proposed protocol has high computation and communication efficiency. IEEE
In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML *** increase in the diversification of training samples increases the generalization capabilities,which enhance...
详细信息
In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML *** increase in the diversification of training samples increases the generalization capabilities,which enhances the prediction performance of classifiers when tested on unseen *** learning(DL)models have a lot of parameters,and they frequently ***,to avoid overfitting,data plays a major role to augment the latest improvements in ***,reliable data collection is a major limiting ***,this problem is undertaken by combining augmentation of data,transfer learning,dropout,and methods of normalization in *** this paper,we introduce the application of data augmentation in the field of image classification using Random Multi-model Deep Learning(RMDL)which uses the association approaches of multi-DL to yield random models for *** present a methodology for using Generative Adversarial Networks(GANs)to generate images for data *** experiments,we discover that samples generated by GANs when fed into RMDL improve both accuracy and model *** across both MNIST and CIAFAR-10 datasets show that,error rate with proposed approach has been decreased with different random models.
Traditional backdoor attacks insert a trigger patch in the training images and associate the trigger with the targeted class label. Backdoor attacks are one of the rapidly evolving types of attack which can have a sig...
详细信息
In this study, the cloud computing platform is equipped with a hybrid multi-objective meta-heuristic optimization-based load balancing model. Physical Machine (PM) allocates a specific virtual machine (VM) depending o...
详细信息
In this study, the cloud computing platform is equipped with a hybrid multi-objective meta-heuristic optimization-based load balancing model. Physical Machine (PM) allocates a specific virtual machine (VM) depending on multiple criteria, such as the amount of memory used, migration expenses, power usage, and the load balancing settings, upon receiving a request to handle a cloud user's duties (‘Response time, Turnaround time, and Server load’). Additionally, the optimal virtual machine (VM) is chosen for efficient load balancing by utilizing the recently proposed hybrid optimization approach. The Cat and Mouse-Based Optimizer (CMBO) and Standard Dingo Optimizer (DXO) are conceptually blended together to get the proposed hybridization method known as Dingo Customized Cat mouse Optimization (DCCO). The developed method achieves the lowest server load in cloud environment 1 is 33.3%, 40%, 42.3%, 40.2%, 36.8%, 42.5%, 50%, 40.2%, 39.2% improved over MOA, ABC, CSO, SSO, SSA, ACSO, SMO, CMBO, BOA, DOX, and FF-PSO, respectively. Finally, the projected DCCO model has been evaluated in terms of makespan, memory usage, migration cost, response time, usage of power server load, turnaround time, throughput, and convergence. ABBREVIATION: CDC, cloud data center;CMODLB, Clustering-based Multiple Objective Dynamic Load Balancing As A Load Balancing;CSP, Cloud service providers;CSSA, Chaotic Squirrel Search Algorithm;DA, Dragonfly Algorithm;ED, Euclidean Distance;EDA-GA, Estimation Of Distribution Algorithm And GA;FF, FireFly algorithm;GA, Genetic Algorithm;HHO, Harris Hawk Optimization;IaaS, Infrastructure-as-a-Service;MGWO, Modified Mean Grey Wolf Optimization Algorithm;MMHHO, Mantaray modified multi-objective Harris Hawk optimization;MRFO, Manta Ray Forging Optimization;PaaS, Platform-as-a-Service;PM, Physical Machine;PSO, Particle Swarm Optimization;SaaS, Software-as-a-Service;SAW, Sample additive weighting;SLA-LB, Service Level Agreement-Based Load Balancing;TBTS, Threshold-Bas
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition with varying degrees of severity. Early diagnosis and classification of autism severity are crucial for personalized intervention and support. T...
详细信息
The Computational Visual Media(CVM)conference series is intended to provide a prominent international forum for exchanging innovative research ideas and significant computational methodologies that either underpin or ...
详细信息
The Computational Visual Media(CVM)conference series is intended to provide a prominent international forum for exchanging innovative research ideas and significant computational methodologies that either underpin or apply visual media.
Cross-Site Scripting(XSS)remains a significant threat to web application security,exploiting vulnerabilities to hijack user sessions and steal sensitive *** detection methods often fail to keep pace with the evolving ...
详细信息
Cross-Site Scripting(XSS)remains a significant threat to web application security,exploiting vulnerabilities to hijack user sessions and steal sensitive *** detection methods often fail to keep pace with the evolving sophistication of cyber *** paper introduces a novel hybrid ensemble learning framework that leverages a combination of advanced machine learning algorithms—Logistic Regression(LR),Support Vector Machines(SVM),eXtreme Gradient Boosting(XGBoost),Categorical Boosting(CatBoost),and Deep Neural Networks(DNN).Utilizing the XSS-Attacks-2021 dataset,which comprises 460 instances across various real-world trafficrelated scenarios,this framework significantly enhances XSS attack *** approach,which includes rigorous feature engineering and model tuning,not only optimizes accuracy but also effectively minimizes false positives(FP)(0.13%)and false negatives(FN)(0.19%).This comprehensive methodology has been rigorously validated,achieving an unprecedented accuracy of 99.87%.The proposed system is scalable and efficient,capable of adapting to the increasing number of web applications and user demands without a decline in *** demonstrates exceptional real-time capabilities,with the ability to detect XSS attacks dynamically,maintaining high accuracy and low latency even under significant ***,despite the computational complexity introduced by the hybrid ensemble approach,strategic use of parallel processing and algorithm tuning ensures that the system remains scalable and performs robustly in real-time *** for easy integration with existing web security systems,our framework supports adaptable Application Programming Interfaces(APIs)and a modular design,facilitating seamless augmentation of current *** innovation represents a significant advancement in cybersecurity,offering a scalable and effective solution for securing modern web applications against evolving threats.
In recent years, the field of humancentric decision-making has emerged as a critical area of research, driven by its potential to fundamentally reshape how decisions are made across a variety of complex systems. Human...
详细信息
Bat Algorithm (BA) is a nature-inspired metaheuristic search algorithm designed to efficiently explore complex problem spaces and find near-optimal solutions. The algorithm is inspired by the echolocation behavior of ...
详细信息
暂无评论