We explore the reasons for the poorer feature extraction ability of vanilla convolution and discover that there mainly exist three key factors that restrict its representation capability, i.e., regular sampling, stati...
详细信息
This paper presents a simple method for predicting inductance in applications of variable inductors with ferrite cores. Today, switching converters are widely used for voltage and current level conversion in renewable...
详细信息
This paper presents a single-pass stochastic gradient descent (SGD) algorithm for estimating unknown noise covariances. The proposed algorithm is designed for nonswitching multiple-model adaptive Kalman filters, where...
详细信息
The automatic detection of brain tumor is an emerging challenge because tumors vary in mass, nature, position, and similarities between the normal and brain lesions. First, the Magnetic Resonance Imaging (MRI) images ...
详细信息
This study compares the trajectory tracking performance of two- and four-wheel steering systems, especially under normal driving conditions. Specifically, the lateral motion is controlled by an event-triggered model p...
详细信息
Let P be a set of points in the plane and let T be a maximum-weight spanning tree of P. For an edge (p, q), let Dpq be the diametral disk induced by (p, q), i.e., the disk having the segment pq as its diameter. Let DT...
详细信息
In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML *** increase in the diversification of training samples increases the generalization capabilities,which enhance...
详细信息
In the machine learning(ML)paradigm,data augmentation serves as a regularization approach for creating ML *** increase in the diversification of training samples increases the generalization capabilities,which enhances the prediction performance of classifiers when tested on unseen *** learning(DL)models have a lot of parameters,and they frequently ***,to avoid overfitting,data plays a major role to augment the latest improvements in ***,reliable data collection is a major limiting ***,this problem is undertaken by combining augmentation of data,transfer learning,dropout,and methods of normalization in *** this paper,we introduce the application of data augmentation in the field of image classification using Random Multi-model Deep Learning(RMDL)which uses the association approaches of multi-DL to yield random models for *** present a methodology for using Generative Adversarial Networks(GANs)to generate images for data *** experiments,we discover that samples generated by GANs when fed into RMDL improve both accuracy and model *** across both MNIST and CIAFAR-10 datasets show that,error rate with proposed approach has been decreased with different random models.
Federated learning (FL) is widely used in various fields because it can guarantee the privacy of the original data source. However, in data-sensitive fields such as Internet of Vehicles (IoV), insecure communication c...
详细信息
Federated learning (FL) is widely used in various fields because it can guarantee the privacy of the original data source. However, in data-sensitive fields such as Internet of Vehicles (IoV), insecure communication channels, semi-trusted RoadSide Unit (RSU), and collusion between vehicles and the RSU may lead to leakage of model parameters. Moreover, when aggregating data, since different vehicles usually have different computing resources, vehicles with relatively insufficient computing resources will affect the data aggregation efficiency. Therefore, in order to solve the privacy leakage problem and improve the data aggregation efficiency, this paper proposes a privacy-preserving data aggregation protocol for IoV with FL. Firstly, the protocol is designed based on methods such as shamir secret sharing scheme, pallier homomorphic encryption scheme and blinding factor protection, which can guarantee the privacy of model parameters. Secondly, the protocol improves the data aggregation efficiency by setting dynamic training time windows. Thirdly, the protocol reduces the frequent participations of Trusted Authority (TA) by optimizing the fault-tolerance mechanism. Finally, the security analysis proves that the proposed protocol is secure, and the performance analysis results also show that the proposed protocol has high computation and communication efficiency. IEEE
In this study, the cloud computing platform is equipped with a hybrid multi-objective meta-heuristic optimization-based load balancing model. Physical Machine (PM) allocates a specific virtual machine (VM) depending o...
详细信息
In this study, the cloud computing platform is equipped with a hybrid multi-objective meta-heuristic optimization-based load balancing model. Physical Machine (PM) allocates a specific virtual machine (VM) depending on multiple criteria, such as the amount of memory used, migration expenses, power usage, and the load balancing settings, upon receiving a request to handle a cloud user's duties (‘Response time, Turnaround time, and Server load’). Additionally, the optimal virtual machine (VM) is chosen for efficient load balancing by utilizing the recently proposed hybrid optimization approach. The Cat and Mouse-Based Optimizer (CMBO) and Standard Dingo Optimizer (DXO) are conceptually blended together to get the proposed hybridization method known as Dingo Customized Cat mouse Optimization (DCCO). The developed method achieves the lowest server load in cloud environment 1 is 33.3%, 40%, 42.3%, 40.2%, 36.8%, 42.5%, 50%, 40.2%, 39.2% improved over MOA, ABC, CSO, SSO, SSA, ACSO, SMO, CMBO, BOA, DOX, and FF-PSO, respectively. Finally, the projected DCCO model has been evaluated in terms of makespan, memory usage, migration cost, response time, usage of power server load, turnaround time, throughput, and convergence. ABBREVIATION: CDC, cloud data center;CMODLB, Clustering-based Multiple Objective Dynamic Load Balancing As A Load Balancing;CSP, Cloud service providers;CSSA, Chaotic Squirrel Search Algorithm;DA, Dragonfly Algorithm;ED, Euclidean Distance;EDA-GA, Estimation Of Distribution Algorithm And GA;FF, FireFly algorithm;GA, Genetic Algorithm;HHO, Harris Hawk Optimization;IaaS, Infrastructure-as-a-Service;MGWO, Modified Mean Grey Wolf Optimization Algorithm;MMHHO, Mantaray modified multi-objective Harris Hawk optimization;MRFO, Manta Ray Forging Optimization;PaaS, Platform-as-a-Service;PM, Physical Machine;PSO, Particle Swarm Optimization;SaaS, Software-as-a-Service;SAW, Sample additive weighting;SLA-LB, Service Level Agreement-Based Load Balancing;TBTS, Threshold-Bas
This work analyzes the computing performance of distributed control systems in IEC 61499 on two hardware devices, Dell XPS workstation and Raspi 4B. Based on the test IEC 61499 application, three different system conf...
详细信息
暂无评论