We investigate the problem of finding a spanning tree of a set of n moving points in Rdim that minimizes the maximum total weight (under any convex distance function) or the maximum bottleneck throughout the motion. T...
详细信息
We report on studying diamagnetic levitation and rigid body resonances of millimeter- to centimeter-scale trapped graphite mechanical resonators, by combining theoretical analysis with experimental demonstrations. Har...
详细信息
Semantic segmentation plays an important role in computer perception tasks. Integrating the rich details of RGB images with the illumination robustness of thermal infrared (TIR) images is a promising approach for achi...
详细信息
Semantic segmentation plays an important role in computer perception tasks. Integrating the rich details of RGB images with the illumination robustness of thermal infrared (TIR) images is a promising approach for achieving reliable semantic scene understanding. Current approaches for RGB-Thermal semantic segmentation often overlook the unique characteristics exhibited by each modality at different encoding layers and underutilize the complementary information between the two modalities during decoding. To acquire complementary cross-modality encoding and decoding features, we propose a multi-branch differential bidirectional fusion network known as MDBFNet. Firstly, it models the dependencies between the modality-specific characteristics and the different encoding layers, and designs a TIR-led detail enhancement module (TDE) and an RGB-led semantic enhancement module (RSE) to guide distinguishable fusion for different layer features. Secondly, a three-branch fusion decoder with three supervision (TFDS) is proposed to thoroughly explore the complementary decoding features between two modalities. Experiments on MFNet and PST900 datasets show that our method surpasses state-of-the-art methods by a clear margin. IEEE
Deep learning methods, which form the backbone of neural network architectures, have not only demonstrated exceptional capabilities in classifying data but also in reducing false predictions when handling vast dataset...
详细信息
Cardiovascular diseases (CVDs) are a group of diseases that affect the heart or blood vessels and are the leading cause of mortality around the world. The main focus of this work is to classify heart sounds accurately...
详细信息
Recent progress made in the prediction,characterisation,and mitigation of multipactor discharge is reviewed for single‐and two‐surface ***,an overview of basic concepts including secondary electron emission,electron...
详细信息
Recent progress made in the prediction,characterisation,and mitigation of multipactor discharge is reviewed for single‐and two‐surface ***,an overview of basic concepts including secondary electron emission,electron kinetics under the force law,multipactor susceptibility,and saturation mechanisms is provided,followed by a discus-sion on multipactor mitigation *** strategies are categorised into two broad areas–mitigation by engineered devices and engineered radio frequency(rf)*** approach is useful in different *** advances in multipactor physics and engineering during the past decade,such as novel multipactor prediction methods,un-derstanding space charge effects,schemes for controlling multipacting particle trajec-tories,frequency domain analysis,high frequency effects,and impact on rf signal quality are *** addition to vacuum electron multipaction,multipactor‐induced ioni-zation breakdown is also reviewed,and the recent advances are summarised.
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of acc...
详细信息
In the evolving landscape of surveillance and security applications, the task of person re-identification(re-ID) has significant importance, but also presents notable difficulties. This task entails the process of accurately matching and identifying persons across several camera views that do not overlap with one another. This is of utmost importance to video surveillance, public safety, and person-tracking applications. However, vision-related difficulties, such as variations in appearance, occlusions, viewpoint changes, cloth changes, scalability, limited robustness to environmental factors, and lack of generalizations, still hinder the development of reliable person re-ID methods. There are few approaches have been developed based on these difficulties relied on traditional deep-learning techniques. Nevertheless, recent advancements of transformer-based methods, have gained widespread adoption in various domains owing to their unique architectural properties. Recently, few transformer-based person re-ID methods have developed based on these difficulties and achieved good results. To develop reliable solutions for person re-ID, a comprehensive analysis of transformer-based methods is necessary. However, there are few studies that consider transformer-based techniques for further investigation. This review proposes recent literature on transformer-based approaches, examining their effectiveness, advantages, and potential challenges. This review is the first of its kind to provide insights into the revolutionary transformer-based methodologies used to tackle many obstacles in person re-ID, providing a forward-thinking outlook on current research and potentially guiding the creation of viable applications in real-world scenarios. The main objective is to provide a useful resource for academics and practitioners engaged in person re-ID. IEEE
Thyroid disorders are increasingly prevalent, making early detection crucial for reducing mortality and complications. Accurate prediction of disease progression and understanding the interplay of clinical features ar...
详细信息
This research introduces a unique approach to segmenting breast cancer images using a U-Net-based ***,the computational demand for image processing is very ***,we have conducted this research to build a system that en...
详细信息
This research introduces a unique approach to segmenting breast cancer images using a U-Net-based ***,the computational demand for image processing is very ***,we have conducted this research to build a system that enables image segmentation training with low-power *** accomplish this,all data are divided into several segments,each being trained *** the case of prediction,the initial output is predicted from each trained model for an input,where the ultimate output is selected based on the pixel-wise majority voting of the expected outputs,which also ensures data *** addition,this kind of distributed training system allows different computers to be used *** is how the training process takes comparatively less time than typical training *** after completing the training,the proposed prediction system allows a newly trained model to be included in the ***,the prediction is consistently more *** evaluated the effectiveness of the ultimate output based on four performance matrices:average pixel accuracy,mean absolute error,average specificity,and average balanced *** experimental results show that the scores of average pixel accuracy,mean absolute error,average specificity,and average balanced accuracy are 0.9216,0.0687,0.9477,and 0.8674,*** addition,the proposed method was compared with four other state-of-the-art models in terms of total training time and usage of computational *** it outperformed all of them in these aspects.
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in convention...
详细信息
Detecting sophisticated cyberattacks,mainly Distributed Denial of Service(DDoS)attacks,with unexpected patterns remains challenging in modern *** detection systems often struggle to mitigate such attacks in conventional and software-defined networking(SDN)*** Machine Learning(ML)models can distinguish between benign and malicious traffic,their limited feature scope hinders the detection of new zero-day or low-rate DDoS attacks requiring frequent *** this paper,we propose a novel DDoS detection framework that combines Machine Learning(ML)and Ensemble Learning(EL)techniques to improve DDoS attack detection and mitigation in SDN *** model leverages the“DDoS SDN”dataset for training and evaluation and employs a dynamic feature selection mechanism that enhances detection accuracy by focusing on the most relevant *** adaptive approach addresses the limitations of conventional ML models and provides more accurate detection of various DDoS attack *** proposed ensemble model introduces an additional layer of detection,increasing reliability through the innovative application of ensemble *** proposed solution significantly enhances the model’s ability to identify and respond to dynamic threats in *** provides a strong foundation for proactive DDoS detection and mitigation,enhancing network defenses against evolving *** comprehensive runtime analysis of Simultaneous Multi-Threading(SMT)on identical configurations shows superior accuracy and efficiency,with significantly reduced computational time,making it ideal for real-time DDoS detection in dynamic,rapidly changing *** results demonstrate that our model achieves outstanding performance,outperforming traditional algorithms with 99%accuracy using Random Forest(RF)and K-Nearest Neighbors(KNN)and 98%accuracy using XGBoost.
暂无评论