In an era dominated by information dissemination through various channels like newspapers,social media,radio,and television,the surge in content production,especially on social platforms,has amplified the challenge of...
详细信息
In an era dominated by information dissemination through various channels like newspapers,social media,radio,and television,the surge in content production,especially on social platforms,has amplified the challenge of distinguishing between truthful and deceptive *** news,a prevalent issue,particularly on social media,complicates the assessment of news *** pervasive spread of fake news not only misleads the public but also erodes trust in legitimate news sources,creating confusion and polarizing *** the volume of information grows,individuals increasingly struggle to discern credible content from false narratives,leading to widespread misinformation and potentially harmful *** numerous methodologies proposed for fake news detection,including knowledge-based,language-based,and machine-learning approaches,their efficacy often diminishes when confronted with high-dimensional datasets and data riddled with noise or *** study addresses this challenge by evaluating the synergistic benefits of combining feature extraction and feature selection techniques in fake news *** employ multiple feature extraction methods,including Count Vectorizer,Bag of Words,Global Vectors for Word Representation(GloVe),Word to Vector(Word2Vec),and Term Frequency-Inverse Document Frequency(TF-IDF),alongside feature selection techniques such as Information Gain,Chi-Square,Principal Component Analysis(PCA),and Document *** comprehensive approach enhances the model’s ability to identify and analyze relevant features,leading to more accurate and effective fake news *** findings highlight the importance of a multi-faceted approach,offering a significant improvement in model accuracy and ***,the study emphasizes the adaptability of the proposed ensemble model across diverse datasets,reinforcing its potential for broader application in real-world *** introduce a pioneering ensemble
Recently, deep learning has been widely employed across various domains. The Convolution Neural Network (CNN), a popular deep learning algorithm, has been successfully utilized in object recognition tasks, such as fac...
详细信息
Protein structure prediction is one of the main research areas in the field of Bio-informatics. The importance of proteins in drug design attracts researchers for finding the accurate tertiary structure of the protein...
详细信息
IoT devices rely on authentication mechanisms to render secure message *** data transmission,scalability,data integrity,and processing time have been considered challenging aspects for a system constituted by IoT *** ...
详细信息
IoT devices rely on authentication mechanisms to render secure message *** data transmission,scalability,data integrity,and processing time have been considered challenging aspects for a system constituted by IoT *** application of physical unclonable functions(PUFs)ensures secure data transmission among the internet of things(IoT)devices in a simplified network with an efficient time-stamped *** paper proposes a secure,lightweight,cost-efficient reinforcement machine learning framework(SLCR-MLF)to achieve decentralization and security,thus enabling scalability,data integrity,and optimized processing time in IoT *** has been integrated into SLCR-MLF to improve the security of the cluster head node in the IoT platform during transmission by providing the authentication service for device-to-device *** IoT network gathers information of interest from multiple cluster members selected by the proposed *** addition,the software-defined secured(SDS)technique is integrated with SLCR-MLF to improve data integrity and optimize processing time in the IoT *** analysis shows that the proposed framework outperforms conventional methods regarding the network’s lifetime,energy,secured data retrieval rate,and performance *** enabling the proposed framework,number of residual nodes is reduced to 16%,energy consumption is reduced by up to 50%,almost 30%improvement in data retrieval rate,and network lifetime is improved by up to 1000 msec.
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G *** Intelligence(AI)algorithms will be an integral part ...
详细信息
Fog computing is a key enabling technology of 6G systems as it provides quick and reliable computing,and data storage services which are required for several 6G *** Intelligence(AI)algorithms will be an integral part of 6G systems and efficient task offloading techniques using fog computing will improve their performance and *** this paper,the focus is on the scenario of Partial Offloading of a Task to Multiple Helpers(POMH)in which larger tasks are divided into smaller subtasks and processed in parallel,hence expediting task ***,using POMH presents challenges such as breaking tasks into subtasks and scaling these subtasks based on many interdependent factors to ensure that all subtasks of a task finish simultaneously,preventing resource ***,applying matching theory to POMH scenarios results in dynamic preference profiles of helping devices due to changing subtask sizes,resulting in a difficult-to-solve,externalities *** paper introduces a novel many-to-one matching-based algorithm,designed to address the externalities problem and optimize resource allocation within POMH ***,we propose a new time-efficient preference profiling technique that further enhances time optimization in POMH *** performance of the proposed technique is thoroughly evaluated in comparison to alternate baseline schemes,revealing many advantages of the proposed *** simulation findings indisputably show that the proposed matching-based offloading technique outperforms existing methodologies in the literature,yielding a remarkable 52 reduction in task latency,particularly under high workloads.
Social media is nowadays a vital platform where people can share their feelings about any incident, product, or any issue. Twitter is one of those platforms which are very popular. If we must make use of this to extra...
详细信息
Conventionally, a virtual synchronous generator (VSG) is designed for islanded mode (IM) operation to meet specific operational requirements such as the rate of change of frequency (RoCoF). However, the operation of V...
详细信息
Accurate prediction of above ground biomass (AGB) is critical for monitoring forest health and carbon cycling. It is crucial for understanding and managing forest ecosystems. In this paper, we propose an enhanced fram...
详细信息
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled ...
详细信息
The development of the Internet of Things(IoT)technology is leading to a new era of smart applications such as smart transportation,buildings,and smart ***,these applications act as the building blocks of IoT-enabled smart *** high volume and high velocity of data generated by various smart city applications are sent to flexible and efficient cloud computing resources for ***,there is a high computation latency due to the presence of a remote cloud *** computing,which brings the computation close to the data source is introduced to overcome this *** an IoT-enabled smart city environment,one of the main concerns is to consume the least amount of energy while executing tasks that satisfy the delay *** efficient resource allocation at the edge is helpful to address this *** this paper,an energy and delay minimization problem in a smart city environment is formulated as a bi-objective edge resource allocation ***,we presented a three-layer network architecture for IoT-enabled smart ***,we designed a learning automata-based edge resource allocation approach considering the three-layer network architecture to solve the said bi-objective minimization *** Automata(LA)is a reinforcement-based adaptive decision-maker that helps to find the best task and edge resource *** extensive set of simulations is performed to demonstrate the applicability and effectiveness of the LA-based approach in the IoT-enabled smart city environment.
Transition towards carbon-neutral power systems has necessitated optimization of power dispatch in active distribution networks(ADNs)to facilitate integration of distributed renewable *** to unavailability of network ...
详细信息
Transition towards carbon-neutral power systems has necessitated optimization of power dispatch in active distribution networks(ADNs)to facilitate integration of distributed renewable *** to unavailability of network topology and line impedance in many distribution networks,physical model-based methods may not be applicable to their *** tackle this challenge,some studies have proposed constraint learning,which replicates physical models by training a neural network to evaluate feasibility of a decision(i.e.,whether a decision satisfies all critical constraints or not).To ensure accuracy of this trained neural network,training set should contain sufficient feasible and infeasible ***,since ADNs are mostly operated in a normal status,only very few historical samples are ***,the historical dataset is highly imbalanced,which poses a significant obstacle to neural network *** address this issue,we propose an enhanced constraint learning ***,it leverages constraint learning to train a neural network as surrogate of ADN's ***,it introduces Synthetic Minority Oversampling Technique to generate infeasible samples to mitigate imbalance of historical *** incorporating historical and synthetic samples into the training set,we can significantly improve accuracy of neural ***,we establish a trust region to constrain and thereafter enhance reliability of the *** confirm the benefits of the proposed method in achieving desirable optimality and feasibility while maintaining low computational complexity.
暂无评论