Virtual reality (VR) systems are susceptible to cybersickness, significantly hindering user immersion. Very recently, researchers introduced explainable artificial intelligence (XAI) enabled methods for detecting and ...
详细信息
Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems (IDS). Data labeling difficulties, incorrect conclusions, and vulnerability to malicious data i...
详细信息
Large language models (LLMs) have recently shown remarkable performance in a variety of natural language processing (NLP) *** further explore LLMs'reasoning abilities in solving complex problems,recent research [1...
Large language models (LLMs) have recently shown remarkable performance in a variety of natural language processing (NLP) *** further explore LLMs'reasoning abilities in solving complex problems,recent research [1-3]has investigated chain-of-thought (CoT) reasoning in complex multimodal scenarios,such as science question answering (scienceQA) tasks [4],by fine-tuning multimodal models through human-annotated CoT ***,collected CoT rationales often miss the necessary rea-soning steps and specific expertise.
Spectrum sensing data falsification (SSDF) attack, i.e., Byzantine attack, is one of the critical threats of the cooperative spectrum sensing where the Byzantine attackers (BAs) forward incorrect local sensing results...
详细信息
Spectrum sensing data falsification (SSDF) attack, i.e., Byzantine attack, is one of the critical threats of the cooperative spectrum sensing where the Byzantine attackers (BAs) forward incorrect local sensing results to mislead the fusion center on channel availability decisions. By using traditional voting rule, the cooperative spectrum sensing performance deteriorates significantly due to incorrect local sensing results. Then, reliability weight strategy becomes the popular solution to avoid incorrect sensing results from BAs and unreliable cognitive radio users (CRUs). However, it is very difficult to detect the attackers since they also occasionally provide correct sensing results to the fusion center for concealing the attack objective. Based on existing techniques, the BAs and CRUs may be assigned with low reliability weights or distinguished from the data fusion account. However, it is very difficult to detect the attackers since they also occasionally provide correct sensing results to the fusion center for concealing the attack objective. Then, existing techniques still suffer from BAs and negative impact of unreliable CRUs. In this paper, we propose the adaptive cooperative quality weight algorithm for mitigating the Byzantine attack issue by distinguishing the BAs and CRUs from the data fusion account while selecting only useful CRUs since the number of members in the account is also the important factor for cooperative spectrum sensing. In our proposed algorithm, we adopt a stable preference ordering towards ideal solution (SPOTIS) for determining the reliability of SUs which shows low computational complexity as compared to other reliability weight-based techniques. To achieve high sensing performance, our global decision threshold is adapted according to the reliability of reliable users. From the simulation results, our proposed algorithm significantly improves global detection probability and total error probability compared to the traditional votin
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
This paper addresses the gradient coding and coded matrix multiplication problems in distributed optimization and coded computing. We present a computationally efficient coding method which overcomes the drawbacks of ...
详细信息
In this paper, we have proposed a novel deep-learning model to process electrocardiogram (ECG) signals from single-lead ECG device. This is achieved by using a hybrid of CNN (convolutional neural network) and LSTM (lo...
详细信息
Integration of phase-change materials(PCMs)created a unique opportunity to implement reconfigurable photonics devices that their performance can be tuned depending on the target *** PCMs such as Ge-Sb-Te(GST)and Ge-Sb...
详细信息
Integration of phase-change materials(PCMs)created a unique opportunity to implement reconfigurable photonics devices that their performance can be tuned depending on the target *** PCMs such as Ge-Sb-Te(GST)and Ge-Sb-Se-Te(GSST)rely on melt-quench and high temperature annealing processes to change the organization of the molecules in the materials’*** a reorganization leads to different optical,electrical,and thermal properties which can be exploited to implement photonic memory cells that are able to store the data at different resistance or optical transmission *** the great promise of conventional PCMs for realizing reconfigurable photonic memories,their slow and extremely power-hungry thermal mechanisms make scaling the systems based on such devices *** addition,such materials do not offer a stable multi-level response over a long period of *** address these shortcomings,the research carried out in this study shows the proof of concept to implement next-generation photonic memory cells based on two-dimensional(2D)birefringence PCMs such as SnSe,which offer anisotropic optical properties that can be switched *** demonstrate that by leveraging the ultrafast and low-power crystallographic direction change of the material,the optical polarization state of the input optical signal can be *** enables the implementation of next-generation high-speed polarization-encodable photonic memory cells for future photonic computing *** to the conventional PCMs,the proposed SnSe-based photonic memory cells offer an ultrafast switching and low-loss optical response relying on ferroelectric property of SnSe to encode the data on the polarization state of the input optical *** a polarization encoding scheme also reduces memory read-out errors and alleviates the scalability limitations due to the optical insertion loss often seen in optical transmission encoding.
Effective management of electricity consumption (EC) in smart buildings (SBs) is crucial for optimizing operational efficiency, cost savings, and ensuring sustainable resource utilization. Accurate EC prediction enabl...
详细信息
Alzheimer’s disease(AD)is a significant challenge in modern healthcare,with early detection and accurate staging remaining critical priorities for effective *** Deep Learning(DL)approaches have shown promise in AD di...
详细信息
Alzheimer’s disease(AD)is a significant challenge in modern healthcare,with early detection and accurate staging remaining critical priorities for effective *** Deep Learning(DL)approaches have shown promise in AD diagnosis,existing methods often struggle with the issues of precision,interpretability,and class *** study presents a novel framework that integrates DL with several eXplainable Artificial Intelligence(XAI)techniques,in particular attention mechanisms,Gradient-Weighted Class Activation Mapping(Grad-CAM),and Local Interpretable Model-Agnostic Explanations(LIME),to improve bothmodel interpretability and feature *** study evaluates four different DL architectures(ResMLP,VGG16,Xception,and Convolutional Neural Network(CNN)with attention mechanism)on a balanced dataset of 3714 MRI brain scans from patients aged 70 and *** proposed CNN with attention model achieved superior performance,demonstrating 99.18%accuracy on the primary dataset and 96.64% accuracy on the ADNI dataset,significantly advancing the state-of-the-art in AD *** ability of the framework to provide comprehensive,interpretable results through multiple visualization techniques while maintaining high classification accuracy represents a significant advancement in the computational diagnosis of AD,potentially enabling more accurate and earlier intervention in clinical settings.
暂无评论