This article introduces a novel Multi-agent path planning scheme based on Conflict Based Search (CBS) for heterogeneous holonomic and non-holonomic agents, designated as Heterogeneous CBS (HCBS). The proposed methodol...
详细信息
The steady-state security region(SSR)offers ro-bust support for the security assessment and control of new power systems with high uncertainty and ***,accurately solving the steady-state security region boundary(SS-RB...
详细信息
The steady-state security region(SSR)offers ro-bust support for the security assessment and control of new power systems with high uncertainty and ***,accurately solving the steady-state security region boundary(SS-RB),which is high-dimensional,non-convex,and non-linear,presents a significant *** address this problem,this paper proposes a method for approximating the SSRB in power systems using the feature non-linear converter and improved oblique decision ***,to better characterize the SSRB,boundary samples are generated using the proposed sampling *** samples are distributed within a limited distance near the ***,to handle the high-dimensionality,non-convexity and non-linearity of the SSRB,boundary samples are converted from the original power injection space to a new fea-ture space using the designed feature non-linear ***-sequently,in this feature space,boundary samples are linearly separated using the proposed information gain rate based weighted oblique decision ***,the effectiveness and generality of the proposed sampling method are verified on the WECC 3-machine 9-bus system and IEEE 118-bus system.
In light of the escalating privacy risks in the big data era, this paper introduces an innovative model for the anonymization of big data streams, leveraging in-memory processing within the Spark framework. The approa...
详细信息
In the era of big data, with the increase in volume and complexity of data, the main challenge is how to use big data while preserving the privacy of users. This study was conducted with the aim of finding a solution ...
详细信息
A new online scheduling algorithm is proposed for photovoltaic(PV)systems with battery-assisted energy storage systems(BESS).The stochastic nature of renewable energy sources necessitates the employment of BESS to bal...
详细信息
A new online scheduling algorithm is proposed for photovoltaic(PV)systems with battery-assisted energy storage systems(BESS).The stochastic nature of renewable energy sources necessitates the employment of BESS to balance energy supplies and demands under uncertain weather *** proposed online scheduling algorithm aims at minimizing the overall energy cost by performing actions such as load shifting and peak shaving through carefully scheduled BESS charging/discharging *** scheduling algorithm is developed by using deep deterministic policy gradient(DDPG),a deep reinforcement learning(DRL)algorithm that can deal with continuous state and action *** of the main contributions of this work is a new DDPG reward function,which is designed based on the unique behaviors of energy *** new reward function can guide the scheduler to learn the appropriate behaviors of load shifting and peak shaving through a balanced process of exploration and *** new scheduling algorithm is tested through case studies using real world data,and the results indicate that it outperforms existing algorithms such as Deep *** online algorithm can efficiently learn the behaviors of optimum non-casual off-line algorithms.
In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mo...
详细信息
In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mobileapps. The use of these apps eases our daily lives, and all customers who need any type of service can accessit easily, comfortably, and efficiently through mobile apps. Particularly, Saudi Arabia greatly depends on digitalservices to assist people and visitors. Such mobile devices are used in organizing daily work schedules and services,particularly during two large occasions, Umrah and Hajj. However, pilgrims encounter mobile app issues such asslowness, conflict, unreliability, or user-unfriendliness. Pilgrims comment on these issues on mobile app platformsthrough reviews of their experiences with these digital services. Scholars have made several attempts to solve suchmobile issues by reporting bugs or non-functional requirements by utilizing user ***, solving suchissues is a great challenge, and the issues still exist. Therefore, this study aims to propose a hybrid deep learningmodel to classify and predict mobile app software issues encountered by millions of pilgrims during the Hajj andUmrah periods from the user perspective. Firstly, a dataset was constructed using user-generated comments fromrelevant mobile apps using natural language processing methods, including information extraction, the annotationprocess, and pre-processing steps, considering a multi-class classification problem. Then, several experimentswere conducted using common machine learning classifiers, Artificial Neural Networks (ANN), Long Short-TermMemory (LSTM), and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) architectures, toexamine the performance of the proposed model. Results show 96% in F1-score and accuracy, and the proposedmodel outperformed the mentioned models.
Scalability and information personal privacy are vital for training and deploying large-scale deep learning *** learning trains models on exclusive information by aggregating weights from various devices and taking ad...
详细信息
Scalability and information personal privacy are vital for training and deploying large-scale deep learning *** learning trains models on exclusive information by aggregating weights from various devices and taking advantage of the device-agnostic environment of web ***,relying on a main central server for internet browser-based federated systems can prohibit scalability and interfere with the training process as a result of growing client ***,information relating to the training dataset can possibly be extracted from the distributed weights,potentially reducing the privacy of the local data used for *** this research paper,we aim to investigate the challenges of scalability and data privacy to increase the efficiency of distributed training *** a result,we propose a web-federated learning exchange(WebFLex)framework,which intends to improve the decentralization of the federated learning *** is additionally developed to secure distributed and scalable federated learning systems that operate in web browsers across heterogeneous ***,WebFLex utilizes peer-to-peer interactions and secure weight exchanges utilizing browser-to-browser web real-time communication(WebRTC),efficiently preventing the need for a main central *** has actually been measured in various setups using the MNIST *** results show WebFLex’s ability to improve the scalability of federated learning systems,allowing a smooth increase in the number of participating devices without central data *** addition,WebFLex can maintain a durable federated learning procedure even when faced with device disconnections and network ***,it improves data privacy by utilizing artificial noise,which accomplishes an appropriate balance between accuracy and privacy preservation.
AC optimal power flow (AC OPF) is a fundamental problem in power system operations. Accurately modeling the network physics via the AC power flow equations makes AC OPF a challenging nonconvex problem. To search for g...
详细信息
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, faci...
详细信息
In recent years, mental health issues have profoundly impacted individuals’ well-being, necessitating prompt identification and intervention. Existing approaches grapple with the complex nature of mental health, facing challenges like task interference, limited adaptability, and difficulty in capturing nuanced linguistic expressions indicative of various conditions. In response to these challenges, our research presents three novel models employing multi-task learning (MTL) to understand mental health behaviors comprehensively. These models encompass soft-parameter sharing-based long short-term memory with attention mechanism (SPS-LSTM-AM), SPS-based bidirectional gated neural networks with self-head attention mechanism (SPS-BiGRU-SAM), and SPS-based bidirectional neural network with multi-head attention mechanism (SPS-BNN-MHAM). Our models address diverse tasks, including detecting disorders such as bipolar disorder, insomnia, obsessive-compulsive disorder, and panic in psychiatric texts, alongside classifying suicide or non-suicide-related texts on social media as auxiliary tasks. Emotion detection in suicide notes, covering emotions of abuse, blame, and sorrow, serves as the main task. We observe significant performance enhancement in the primary task by incorporating auxiliary tasks. Advanced encoder-building techniques, including auto-regressive-based permutation and enhanced permutation language modeling, are recommended for effectively capturing mental health contexts’ subtleties, semantic nuances, and syntactic structures. We present the shared feature extractor called shared auto-regressive for language modeling (S-ARLM) to capture high-level representations that are useful across tasks. Additionally, we recommend soft-parameter sharing (SPS) subtypes-fully sharing, partial sharing, and independent layer-to minimize tight coupling and enhance adaptability. Our models exhibit outstanding performance across various datasets, achieving accuracies of 96.9%, 97.
Semantic communication has emerged as a promising solution to meet the growing demand for efficient data transmission in the information age. Unlike traditional communication methods that focus on transmitting raw dat...
详细信息
暂无评论