We show that a classical spin liquid phase can emerge from an ordered magnetic state in the two-dimensional frustrated Shastry-Sutherland Ising lattice due to lateral confinement. Two distinct classical spin liquid st...
详细信息
We show that a classical spin liquid phase can emerge from an ordered magnetic state in the two-dimensional frustrated Shastry-Sutherland Ising lattice due to lateral confinement. Two distinct classical spin liquid states are stabilized: (i) long-range spin-correlated dimers, and (ii) exponentially decaying spin-correlated disordered states, depending on widths of W=3n, 3n+1 or W=3n+2,n being a positive integer. Stabilization of spin liquids in a square-triangular lattice moves beyond the conventional geometric paradigm of kagome, triangular, or tetrahedral arrangements of antiferromagnetic ions, where spin liquids have been discussed conventionally.
With the exponential growth in information related applications and the continuous increase in voice over IP (VoIP) applications, the carriers are expanding their networks to provide improved services to their end use...
详细信息
Object detection has become an increasingly important application for mobile devices. However, state-of-the-art object detection relies heavily on deep neural network, which is often burdensome to compute on mobile de...
详细信息
In the past decade, studies on illegal fishing have neglected to consider illegal underwater fishing. Traditionally, supervisor-based methods have been used to manually interpret underwater behavior;however, existing ...
详细信息
The ground state electron density—obtainable using Kohn-Sham Density Functional Theory(KSDFT)simulations—contains a wealth of material information,making its prediction via machine learning(ML)models ***,the computa...
详细信息
The ground state electron density—obtainable using Kohn-Sham Density Functional Theory(KSDFT)simulations—contains a wealth of material information,making its prediction via machine learning(ML)models ***,the computational expense of KS-DFT scales cubically with system size which tends to stymie training data generation,making it difficult to develop quantifiably accurate ML models that are applicable across many scales and system ***,we address this fundamental challenge by employing transfer learning to leverage the multi-scale nature of the training data,while comprehensively sampling systemconfigurations using *** ML models are less reliant on heuristics,and being based on Bayesian neural networks,enable uncertainty *** show that our models incur significantly lower data generation costs while allowing confident—and when verifiable,accurate—predictions for a wide variety of bulk systems well beyond training,including systems with defects,different alloy compositions,and at multi-million-atom ***,such predictions can be carried out using only modest computational resources.
The construction of stable and efficient materials that emit blue and green light remains a *** the blue light materials reported,metal-organic framework(MOF)materials are rarely reported as blue phosphors due to thei...
详细信息
The construction of stable and efficient materials that emit blue and green light remains a *** the blue light materials reported,metal-organic framework(MOF)materials are rarely reported as blue phosphors due to their weak luminescence *** on the construction of CsPbBr_(3)@MOF(CPB@MOF),an innovative idea was proposed to simultaneously enhance the green luminescence of CPB and the blue luminescence of MOF through the interaction between CPB and MOF for the first *** expected,the blue luminescence from CPB:7%SCN−@0.5%MOF:Eu as well as the green luminescence from 5%CPB:7%SCN−@MOF:Eu was sufficient to construct high-performance light-emitting diode(LED)devices and further excite solar cells to generate stable photoelectric *** white LED(WLED)device with excellent color quality(color rendering index(CRI)=96.2)and correlated color temperature(CCT=9688 K)can be constructed by using the obtained blue-emitting CPB:7%SCN-@0.5%MOF:Eu,green-emitting 5%CPB:7%SCN−@MOF:Eu,and red-emitting PPB:30%Mn^(2+).The density functional theory(DFT)theoretical calculation results indicate that the p orbital of Pb plays the major role in the conduction band,and the p orbital of Br plays the major role in the valance band of CPB and CPB:SCN−.While the p orbital of O plays the major role in both the conduction band and valance band of *** heat capacity of CPB and CPB:SCN−separately reaches the Dulong–Petit limit at 200 and 400 K,indicating that the thermal stability of CsPbBr_(3)increases after SCN−doping.
Identifying cyberattacks that attempt to compromise digital systems is a critical function of intrusion detection systems (IDS). Data labeling difficulties, incorrect conclusions, and vulnerability to malicious data i...
详细信息
Charge carrier doping usually reduces the resistance of a semiconductor or insulator, but was recently found to dramatically enhance the resistance in certain series of materials. This remarkable antidoping effect has...
详细信息
Charge carrier doping usually reduces the resistance of a semiconductor or insulator, but was recently found to dramatically enhance the resistance in certain series of materials. This remarkable antidoping effect has been leveraged to realize synaptic memory trees in nanoscale hydrogenated perovskite nickelates, opening a new direction for neuromorphic computing. To understand these phenomena, we formulate a physical phase-field model of the antidoping effect based on its microscopic mechanism and simulate the voltage-driven resistance change in the prototypical system of hydrogenated perovskite nickelates. Remarkably, the simulations using this model, containing only one adjustable parameter whose magnitude is justified by first-principles calculations, quantitatively reproduce the experimentally observed treelike resistance states, which are shown unambiguously to arise from proton redistribution-induced local band gap enhancement and carrier blockage. Our work lays the foundation for modeling the antidoping phenomenon in strongly correlated materials at the mesoscale, which can provide guidance to the design of novel antidoping-physics-based devices.
Photo sensing capability of an artificial synaptic device make it more valuable for brain-inspired computing systems, which can conquer the von Neumann bottleneck. In this letter, Ba0.7 Sr0.3 TiO3 (BST) based single l...
详细信息
The hope for a futuristic global quantum internet that provides robust and high-capacity quantum information transfer lies largely on qudits,the fundamental quantum information carriers prepared in high-dimensional su...
详细信息
The hope for a futuristic global quantum internet that provides robust and high-capacity quantum information transfer lies largely on qudits,the fundamental quantum information carriers prepared in high-dimensional superposition ***,preparing and manipulating N-dimensional flying qudits as well as subsequently establishing their entanglement are still challenging tasks,which require precise and simultaneous maneuver of 2(N-1)parameters across multiple degrees of ***,using an integrated approach,we explore the synergy from two degrees of freedom of light,spatial mode and polarization,to generate,encode,and manipulate flying structured photons and their formed qudits in a four-dimensional Hilbert space with high quantum fidelity,intrinsically enabling enhanced noise resilience and higher quantum data *** four eigen spin–orbit modes of our qudits possess identical spatial–temporal characteristics in terms of intensity distribution and group velocity,thereby preserving long-haul coherence within the entirety of the quantum data transmission *** leveraging the bi-photon entanglement,which is well preserved in the integrated manipulation process,we present versatile spin–orbit cluster states in an extensive dimensional Hilbert *** cluster states hold the promise for quantum error correction which can further bolster the channel robustness in long-range quantum communication.
暂无评论