Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power *** power consumption at the receiver radio frequenc...
详细信息
Large number of antennas and higher bandwidth usage in massive multiple-input-multipleoutput(MIMO)systems create immense burden on receiver in terms of higher power *** power consumption at the receiver radio frequency(RF)circuits can be significantly reduced by the application of analog-to-digital converter(ADC)of low *** this paper we investigate bandwidth efficiency(BE)of massive MIMO with perfect channel state information(CSI)by applying low resolution ADCs with Rician *** start our analysis by deriving the additive quantization noise model,which helps to understand the effects of ADC resolution on BE by keeping the power constraint at the receiver in *** also investigate deeply the effects of using higher bit rates and the number of BS antennas on bandwidth efficiency(BE)of the *** emphasize that good bandwidth efficiency can be achieved by even using low resolution ADC by using regularized zero-forcing(RZF)combining *** also provide a generic analysis of energy efficiency(EE)with different options of bits by calculating the energy efficiencies(EE)using the achievable *** emphasize that satisfactory BE can be achieved by even using low-resolution ADC/DAC in massive MIMO.
Perovskite solar cells represent a revolutionary class of photovoltaic devices that have gained substantial attention for their exceptional performance and potential to provide an affordable and efficient solution for...
详细信息
Perovskite solar cells represent a revolutionary class of photovoltaic devices that have gained substantial attention for their exceptional performance and potential to provide an affordable and efficient solution for harnessing solar energy. These cells utilize perovskite-structured materials, typically hybrid organicinorganic lead halide compounds, as the light-absorbing layer.
Surgical tool tip localization and tracking are essential components of surgical and interventional procedures. The cross sections of tool tips can be considered as acoustic point sources to achieve these tasks with d...
详细信息
Pulsed current cathodic protection(PCCP) could be more effective than direct current cathodic protection(DCCP)for mitigating corrosion in buried structures in the oil and gas industries if appropriate pulsed parameter...
详细信息
Pulsed current cathodic protection(PCCP) could be more effective than direct current cathodic protection(DCCP)for mitigating corrosion in buried structures in the oil and gas industries if appropriate pulsed parameters are chosen. The purpose of this research is to present the corrosion prevention mechanism of the PCCP technique by taking into account the effects of duty cycle as well as frequency, modeling the relationships between pulse parameters(frequency and duty cycle) and system outputs(corrosion rate, protective current and pipe-to-soil potential) and finally identifying the most effective protection conditions over a wide range of frequency(2–10 kHz) and duty cycle(25%-75%). For this, pipe-to-soil potential, pH, current and power consumption, corrosion rate, surface deposits and investigation of pitting corrosion were taken into account. To model the input-output relationship in the PCCP method, a data-driven machine learning approach was used by training an artificial neural network(ANN). The results revealed that the PCCP system could yield the best protection conditions at 10 kHz frequency and 50% duty cycle, resulting in the longest protection length with the lowest corrosion rate at a consumption current 0.3 time that of the DCCP method. In the frequency range of 6–10 kHz and duty cycles of 50%-75%, SEM images indicated a uniform distribution of calcite deposits and no pits on cathode surface.
This article introduces a novel approach to bolster the robustness of Deep Neural Network (DNN) models against adversarial attacks named "Targeted Adversarial Resilience Learning (TARL)". The initial ev...
详细信息
The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boo...
详细信息
The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boost converter is developed to provide the necessary output voltage and power while accommodating variations in input sources. This converter is specifically designed for the efficient usage of renewable energy. The proposed architecture integrates three separate unidirectional input power sources: photovoltaics, fuel cells, and storage system batteries. The architecture has five switches, and the implementation of each switch in the converter is achieved by applying the calculated duty ratios in various operating states. The closed-loop response of the converter with a proportional-integral (PI) controller-based switching system is examined by analyzing the Matlab-Simulink model utilizing a proportional-integral derivative (PID) tuner. The controller can deliver the desired output voltage of 400 V and an average power of 2 kW while exhibiting low switching transient effects. Therefore, the proposed multi-input interleaved boost converter demonstrates robust results for real-time applications by effectively harnessing renewable power sources.
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation lear...
详细信息
High-dimensional and incomplete(HDI) matrices are primarily generated in all kinds of big-data-related practical applications. A latent factor analysis(LFA) model is capable of conducting efficient representation learning to an HDI matrix,whose hyper-parameter adaptation can be implemented through a particle swarm optimizer(PSO) to meet scalable ***, conventional PSO is limited by its premature issues,which leads to the accuracy loss of a resultant LFA model. To address this thorny issue, this study merges the information of each particle's state migration into its evolution process following the principle of a generalized momentum method for improving its search ability, thereby building a state-migration particle swarm optimizer(SPSO), whose theoretical convergence is rigorously proved in this study. It is then incorporated into an LFA model for implementing efficient hyper-parameter adaptation without accuracy loss. Experiments on six HDI matrices indicate that an SPSO-incorporated LFA model outperforms state-of-the-art LFA models in terms of prediction accuracy for missing data of an HDI matrix with competitive computational ***, SPSO's use ensures efficient and reliable hyper-parameter adaptation in an LFA model, thus ensuring practicality and accurate representation learning for HDI matrices.
Artificial intelligence(AI)is shifting the paradigm of two-phase heat transfer *** innovations in AI and machine learning uniquely offer the potential for collecting new types of physically meaningful features that ha...
详细信息
Artificial intelligence(AI)is shifting the paradigm of two-phase heat transfer *** innovations in AI and machine learning uniquely offer the potential for collecting new types of physically meaningful features that have not been addressed in the past,for making their insights available to other domains,and for solving for physical quantities based on first principles for phasechange thermofluidic *** review outlines core ideas of current AI technologies connected to thermal energy science to illustrate how they can be used to push the limit of our knowledge boundaries about boiling and condensation *** technologies for meta-analysis,data extraction,and data stream analysis are described with their potential challenges,opportunities,and alternative ***,we offer outlooks and perspectives regarding physics-centered machine learning,sustainable cyberinfrastructures,and multidisciplinary efforts that will help foster the growing trend of AI for phase-change heat and mass transfer.
This study presents a comprehensive optimization and comparative analysis of thermoelectric(TE)infrared(IR)detec-tors using Bi_(2)Te_(3) and Si *** theoretical modeling and numerical simulations,we explored the impact...
详细信息
This study presents a comprehensive optimization and comparative analysis of thermoelectric(TE)infrared(IR)detec-tors using Bi_(2)Te_(3) and Si *** theoretical modeling and numerical simulations,we explored the impact of TE mate-rial properties,device structure,and operating conditions on responsivity,detectivity,noise equivalent temperature difference(NETD),and noise equivalent power(NEP).Our study offers an optimally designed IR detector with responsivity and detectivity approaching 2×10^(5) V/W and 6×10^(9) cm∙Hz^(1/2)/W,*** enhancement is attributed to unique design features,includ-ing raised thermal collectors and long suspended thin thermoelectric wire sensing elements embedded in low thermal conductivity organic materials like ***,we demonstrate the compatibility of Bi_(2)Te_(3)-based detector fabrication pro-cesses with existing MEMS foundry processes,facilitating scalability and ***,for TE IR detectors,zT/κemerges as a critical parameter contrary to conventional TE material selection based solely on zT(where zT is the thermoelec-tric figure of merit andκis the thermal conductivity).
The growing prevalence of Internet of Things (IoT) devices has heightened vulnerabilities to botnet-based cyberattacks, necessitating robust detection mechanisms. This paper proposes DenseRSE-ASPPNet, an advanced deep...
详细信息
暂无评论